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ABSTRACT 

Multidisciplinary design optimization (MDO) refers to the process of designing 

systems characterized by the interaction of multiple interconnected disciplines. High-

fidelity MDO usually requires large computational resources due to the computational cost 

of achieving multidisciplinary consistent solutions by coupling high-fidelity physics-based 

solvers. Gradient-based minimization algorithms are generally applied to find local 

minima, due to their efficiency in solving problems with a large number of design variables. 

This represents a limitation to performing global MDO and integrating black-box type 

analysis tools, usually not providing gradient information. The latter issues generally 

inhibit a wide use of MDO in complex industrial applications. 

An architecture named multi-criterion adaptive sampling MDO (MCAS-MDO) is 

presented in the current research for complex simulation-based applications. This research 

aims at building a global derivative-free optimization tool able to employ high-

fidelity/expensive black-box solvers for the analysis of the disciplines. MCAS-MDO is a 

surrogate-based architecture featuring a variable level of coupling among the disciplines 

and is driven by a multi-criterion adaptive sampling (MCAS) assessing coupling and 

sampling uncertainties. MCAS uses the dynamic radial basis function surrogate model to 

identify the optimal solution and explore the design space through parallel infill of new 

solutions. 

The MCAS-MDO is tested versus a global derivative-free multidisciplinary 

feasible (MDF) approach, which solves fully-coupled multidisciplinary analyses, for two 

analytical test problems. Evaluation metrics include number of function evaluations 

required to achieve the optimal solution and sample distribution. The MCAS-MDO 



www.manaraa.com

iv 
  

outperforms the MDF showing a faster convergence by clustering refined function 

evaluations in the optimum region. 

The architecture is applied to a steady fluid-structure interaction (FSI) problem, 

namely the design of a tapered three-dimensional carbon fiber-reinforced plastic hydrofoil 

for minimum drag. The objective is the design of shape and composite material layout 

subject to hydrodynamic, structural, and geometrical constraints. Experimental data are 

available for the original configuration of the hydrofoil and allow validating the FSI 

analysis, which is performed coupling computational fluid dynamics, solving the Reynolds 

averaged Navier-Stokes equations, and finite elements, solving the structural equation of 

elastic motion. Hydrofoil forces, tip displacement, and tip twist are evaluated for several 

materials providing qualitative agreement with the experiments and confirming the need 

for the two-way versus one-way coupling approach in case of significantly compliant 

structures. 

The free-form deformation method is applied to generate shape modifications of 

the hydrofoil geometry. To reduce the global computational expense of the optimization, a 

design space assessment and dimensionality reduction based on the Karhunen–Loève 

expansion (KLE) is performed off-line, i.e. without the need for high-fidelity simulations. 

It provides with a selection of design variables for the problem at hand through basis 

rotation and re-parametrization. By using the KLE, an efficient design space is identified 

for the current problem and the number of design variables is reduced by 92%. 

A sensitivity analysis is performed prior to the optimization to assess the variability 

associated with the shape design variables and the composite material design variable, i.e. 

the fiber orientation. These simulations are used to initialize the surrogate model for the 
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optimization, which is carried out for two models: one in aluminum and one in composite 

material. The optimized designs are assessed by comparison with the original models 

through evaluation of the flow field, pressure distribution on the body, and deformation 

under the hydrodynamic load. The drag of the aluminum and composite material hydrofoils 

is reduced by 4 and 11%, respectively, increasing the hydrodynamic efficiency by 4 and 

7%. The optimized designs are obtained by evaluating approximately 100 designs. The 

quality of the results indicates that global derivative-free MDO of complex engineering 

applications using expensive black-box solvers can be achieved at a feasible computational 

cost by minimizing the design space dimensionality and performing an intelligent sampling 

to train the surrogate-based optimization. 
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PUBLIC ABSTRACT 

The goal of this research is developing a numerical tool for designing systems 

subject to the interaction of various physical processes (disciplines), each one governed by 

its particular laws. This tool, which has been named multi-criterion adaptive sampling 

multidisciplinary design optimization (MCAS-MDO), performs design optimization 

combining: an optimizer, a design modification tool, and a multidisciplinary analysis tool 

able to couple and solve the equations of the disciplines involved. With the constantly 

advancing research in each field, it is of interest to build a modular MDO framework which 

allows using state-of-the-art discipline solvers often already available to the designer. Such 

solvers are called black-boxes since, when provided with the input, they produce the output 

without track of the state variables involved in the computation. This greatly increases the 

computational effort of the optimizer due to the lack of gradient information, i.e. the 

behavior of the output of interest around the design under investigation. In this research, 

instead of building an approximation of the gradient, a gradient-free (derivative-free) 

approach is employed and its large computational cost is mitigated by: reducing the number 

of design variables ahead of the optimization, using surrogate models, and using a variable 

level of coupling among the disciplines. The optimization is then driven by a multi-criterion 

adaptive sampling, an algorithm that identifies promising regions of the design space where 

more expensive simulations are worth the investigation. Herein, MCAS-MDO is applied 

to fluid-structure interaction, a challenging mechanical engineering problem involving 

flexible structures deforming under the load exerted by a fluid. The structure at hand is a 

hydrofoil in carbon fiber reinforced plastic, which is a prototypical problem for marine 

vessel appendages such as rudders, fins, and propeller blades. 
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CHAPTER 1:  INTRODUCTION 

Background 

Multidisciplinary design optimization (MDO) is a powerful numerical tool for the 

design of engineering systems subject to the interaction of two or more physical processes. 

It belongs to simulation-based design optimization (SBDO) methodologies. SBDO 

partially replaced the classic build-and-test paradigm due to, on one hand, the high cost of 

prototypes and experiments and, on the other hand, the increasing availability of 

computational resources. It uses numerical optimization for improving conceptual and 

detailed designs relying on the accuracy of specialized analysis/simulation tools. SBDO 

integrates three main components: the analysis tool, the optimizer, and the design 

modification tool. The analysis tool is used to assess the performance of a design by means 

of numerical simulations. The optimizer iteratively generates improved designs, aiming at 

a specified performance target. The design modification tool, according to the 

specifications given by the optimizer, generates design variants and the associated 

computational domain in a form that can be processed by the analysis tool. SBDO is an 

iterative process whose completion is based upon satisfaction of user-defined convergence 

criteria. Figure 1 shows a diagram of the SBDO loop and the flow of information among 

its components. 

 
Figure 1: Simulation-based design optimization diagram 

When performing SBDO of complex engineering systems, multiple physical 

processes (disciplines) are often involved and design goals and requirements are often 

multidisciplinary. The analysis tool of SBDO, specific to a single discipline, is thus 

substituted by a multidisciplinary analysis (MDA) which solves the interaction among the 

disciplines and provides the multidisciplinary solution of the system by coupling multiple 

Analysis tool 
(CFD, FE, …)

Design 
modification tool

Optimizer

SBDO
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analysis tools. A diagram of the MDA is depicted in Figure 2 showing the mutual 

dependency of the discipline outputs in case of four processes. The accuracy of the MDA 

relies upon the multidisciplinary consistency achieved. The complexity of the MDA 

depends on the specific complexity of the single-discipline simulation and the number of 

disciplines involved. For instance, fluid-structure interaction (FSI) analyses involve two 

disciplines, fluid and structural mechanics; however, its complexity is large, due to the 

difficulty in the physical and numerical modeling of fluid, solid, and their interaction.  

 
Figure 2: Multidisciplinary analysis diagram 

MDO aims at the optimization of a design accounting for the discipline interaction. 

The formulation and implementation of MDO needs considering how the disciplines 

interact and how the optimizer and the MDA handle the interaction. Figure 3 presents a 

diagram of the MDO procedure showing how optimizer and MDA manage the calls to the 

discipline solvers. The organizational strategy adopted defines the MDO architecture 

which regulates how the multidisciplinary equilibrium is solved and how the optimal 

design is achieved. The computational cost of achieving accurate MDA solutions through 

coupling of multiple high-fidelity physics-based solvers, along with the algorithmic and 

technological difficulty of exploring large high-dimensional design spaces aiming at global 

optima, represent critical limitations of current state-of-the art MDO methods and 

applications. 



www.manaraa.com

3  
	

 
Figure 3: Multidisciplinary optimization diagram 

In the present work, MDO is applied to FSI. In this challenging mechanical 

engineering application, the MDA aims at the dynamic equilibrium of a flexible structure 

deforming under the load exerted by a fluid. Depending on the physical model of choice, 

fluid and structural simulations can range from computationally inexpensive, for instance 

in the case of potential flow and beam theory for a simple structure, to very expensive, 

when viscosity and compressibility are included in the fluid model and no approximation 

of geometry and material properties is used for the structure. Generally, inexpensive 

models offer fast but low-fidelity solutions, while expensive solvers can achieve more 

accurate results (high-fidelity) at the expense of a long computational time. In FSI, typical 

expensive tools are computational fluid and structural dynamics (CFD and CSD) 

simulations based on Reynolds Averaged Navier-Stokes (RANS) equations and finite 

elements (FE). In complex industrial applications, high-fidelity numerical solvers are 

usually developed by specialists of the field and may be available to the designer in the 

form of black-box tools whose source code and state variables are not easily accessible. 

Additionally, the residuals associated to the numerical solution of systems of partial 

differential equations introduce noise in the black-box outputs. In the context of 

optimization, the lack of accurate gradient information is of paramount significance 

making efficient gradient-based algorithms difficult to use. Furthermore, in most 

applications the existence of multiple local optima cannot be excluded a priori motivating 

the use of global approaches. Performing global derivative-free MDO for complex 
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engineering applications, such as high-fidelity FSI, requires large computational resources 

and represents a technological challenge. 

A common approach for reducing the computational cost of optimization is using 

surrogate models, also called metamodels. These are approximations of the objective 

function based on interpolation or regression. Surrogate models are trained by a set of 

function evaluations whose distribution in the design space is arbitrarily chosen. The 

optimization is performed on the surrogate model and can be sequentially repeated 

evaluating the predicted optimum with the analysis tool and including its performance in 

the training set. To improve the accuracy of the surrogate and the efficiency of the 

surrogate-based optimization, extensive research has been done in sampling methodologies 

moving from standard a priori designs of experiments (DoE) to function-adaptive 

techniques that exploit information becoming available during the optimization process. 

The computational efficiency of performing MDO (or optimization in general) also 

benefits from the use of dimensionality reduction methodologies. These aim at reducing 

the number of design variables handled by the optimizer while retaining only the most 

significant and establishing proper domain dimension. The dimensionality reduction is 

traditionally carried out through sensitivity analysis, thus requiring high-fidelity function 

evaluations. For shape optimization, off-line techniques based on purely geometrical 

considerations have been recently developed, which do not need high-fidelity simulations 

and allow assessing the global variability of the design space. 

An overview of methodologies and relevant references can be found in the 

following paragraphs for MDO, FSI, surrogate-based optimization, derivative-free global 

optimization, and design space dimensionality reduction. Furthermore, an overview of 

recent developments of hydro-structural analysis and optimization in naval engineering is 

provided. 

Multidisciplinary design optimization 

MDO has been widely applied in mechanical engineering, especially for aerospace 

and automotive design. For instance, Grossman et al. (1990), Haftka et al. (1992), and Diez 

and Iemma (2012) present MDO of wings considering disciplines such as aerodynamics, 

structures, flight mechanics, aeroelasticity and control. With a smaller extent, MDO has 

been applied also to marine vehicles, for example in Peri and Campana (2003) and 
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Campana et al. (2006), and marine structures in Leotardi et al. (2016) and Garg et al. 

(2017). 

MDO methods are fundamentally different from standard optimization algorithms 

since their architecture is integrated in the formulation of the problem (Perez et al. 2004). 

When a single optimization problem is solved, the MDO architecture is called monolithic. 

Monolithic architectures generally maintain a strong dependency among disciplines and 

suit applications where individual sub-problems cannot be identified. They may or may not 

achieve multidisciplinary consistency at each optimization iteration (Martins and Lambe, 

2013). For instance, in the multidisciplinary feasible (MDF, Cramer et al. 1994) 

architecture a full MDA is solved for each function call, ensuring multidisciplinary 

accuracy during the entire procedure. A different approach is adopted in the all-at-once 

(AAO, Cramer et al. 1994) formulation, simultaneous analysis and design (SAND, Haftka 

1985), and individual discipline feasible (IDF, Cramer et al. 1994), where complete system 

feasibility is achieved only at optimization convergence. A detailed overview of these 

monolithic architectures is given in the Appendix. 

When the optimization problem is divided into smaller tasks, the architecture is 

called distributed. Each sub-problem includes only the disciplines, variables, and functions 

that are involved. The use of distributed MDO allows a level of independency between 

tasks which fits well engineering environments where knowledge and resources are 

logistically scattered. Distributed architectures are more problem-specific than monolithic 

and include, among others, concurrent subspace optimization (CSSO, Sellar et al. 1996), 

collaborative optimization (CO, Braun et al. 1996), bi-level integrated system synthesis 

(BLISS, Sobieszczanski-Sobieski et al. 2000), and asymmetric subspace optimization 

(ASO, Chittick and Martins 2009). Reviews of monolithic and distributed architectures can 

be found in Haftka et al. (1992), Kroo (1997), Hulme and Bloebaum (1998), Tedford and 

Martins (2010), and Martins and Lambe (2013), among others. These include formulations, 

advantages/drawbacks, and comparisons aimed at evaluating accuracy and efficiency. 

Managing the convergence of multidisciplinary consistency and design 

optimization within the MDO architecture remains an open issue that affects significantly 

the affordability of MDO for complex industrial applications. 



www.manaraa.com

6  
	

Most of well assessed MDO architectures use in-house implementations of the 

discipline solvers which either provide gradient information or are suitable for the 

application of adjoint methodologies. This allows employing gradient-based optimization 

algorithms, generally more efficient than derivative-free methods since less affected by the 

curse of dimensionality. If specialized high-fidelity black-box software is to be used, the 

gradient information is generally not available and its approximation may be expensive 

and lack sufficient accuracy, as for finite differences and complex-step methods. This 

represents one of the major limitation for the extensive application of MDO procedure in 

the system-level design of complex industrial applications. 

Surrogate models played an important role in the development of MDO positively 

contributing to the integration of specific discipline solvers, the reduction of the 

computational cost, and the handling of data noise (Hosder at al. 2001, Viana et al. 2014). 

Some applications can be found, for example, in Sellar et al. (1996) and Sobieszczanski-

Sobieski and Haftka (1997). The interest in surrogate modeling stimulated an extensive 

literature in the last 25 years. Several review papers (e.g. Jin et al. 2001, Simpson et al. 

2001b, Simpson et al. 2004, Queipo et al. 2005, Forrester and Keane 2009, Shan and Wang 

2010) discussed the advantages and limitations of surrogate models. Viana et al. 2014, 

overviewing the history and developments in the field, summarize some of the still open 

issues as follows: “[…] the definition of the metamodel (either by selecting the 

metamodeling technique or its parameters) is a theme that constantly attracts interest from 

the community. Another never-ending problem is the curse of dimensionality. 

Surprisingly, global optimization […] is still one of the topics that will benefit from future 

research in design and analysis of computer experiments.” 

Fluid-structure interaction 

Along with the choice of proper solution methods for fluid and structure, the 

coupling method plays a key role in a successful application of numerical FSI. A one-way 

type of coupling is realized by applying the hydrodynamic load, determined for the rigid 

body, on the flexible structure. In the two-way coupling, the structural deformation is fed 

back into the fluid solver. The use of a one- versus two-way coupling technique depends 

on the hydro-elastic effects due to the mutual coupling of fluid and structural dynamics. 

The two-way coupling can be loose or tight (Matthies and Steindorf 2003). In a loose 
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coupling, also referred to as weak, staggered, or explicit, the structural deformation is fed 

back into the fluid solver only at the beginning of the time step. In a tight coupling, also 

referred to as strong or implicit, fluid and structure solvers exchange load and deformation 

in an iterative manner using non-linear inner iterations (such as predictor/corrector steps or 

Gauss-Seidel sub-iterations) until convergence within each time step. The loose coupling 

is usually performed in a partitioned framework, i.e. using different solvers for fluid and 

structure, each one with its own discretization and numerical parameters. The tight 

coupling can be performed in either a partitioned or a monolithic fashion, where a 

monolithic framework regards fluid and structure as a single system of equations and 

employs a unique solution strategy. Tightly coupled solutions by partitioned solvers are 

usually computationally expensive to achieve, especially if high-fidelity solvers are used. 

This represents a limitation for their use within MDO. 

Monolithic approaches potentially achieve full fluid-structure coupling, since the 

latter occurs at the governing equations level (Michler at al. 2004). For this reason, they 

are often referred to as full coupling methods. However, the accuracy of the single 

discipline analysis is limited by the use of a unique numerical method for both fluid and 

solid, often implemented by FE). Moreover, ill-conditioning of the system of equations and 

difficulty in integrating state-of-the-art fluid/structure solvers in a single framework remain 

open issues. In hydrodynamics, Reynolds number and free-surface effects limit 

significantly the use of monolithic FSI. 

In partitioned methods, the solution of the coupled problem is advanced over the 

separate fluid, structure, and dynamic mesh partitions, in a sequential or parallel fashion. 

Although generally this approach conserves momentum and energy only in an asymptotic 

sense (as grid element and time step tend to zero), it offers several appealing features, 

including the ability to use available high-fidelity tools specifically designed for complex 

industrial problems, with well-established discretization and solution methods within each 

discipline, and preservation of software modularity (Farhat et al. 1998). As a result, a 

successful partitioned method can solve FSI problems with sophisticated fluid and 

structural physics models (Hou et al. 2012). Accuracy and robustness of partitioned 

methods depends on both the conservation properties at the interface and the convergence 

properties of the non-linear iterations. The issue of convergence occurs in monolithic 



www.manaraa.com

8  
	

methods as well but within partitioned framework a formal proof of convergence is often 

unattainable. 

Surrogate-based optimization 

Metamodelling techniques have been developed and widely applied in several 

engineering fields. Among others, radial basis functions (RBF, Hardy 1971) and Kriging 

(Matheron 1963) have proved their efficacy in many design applications. RBF studies are 

shown, for instance, in Jin et al. (2001), Jin et al. (2003), Mullur and Messac (2006), Regis 

(2011), and Glaz et al. (2009). Developments and comparative studies on the Kriging 

model are presented in Jones et al. (1998), Jin et al. (2001), and Kleijnen and Van Beers 

(2004) among others. A dynamic RBF (DRBF) metamodel for uncertainty quantification 

(UQ) in ship hydrodynamics has been presented in Volpi et al. (2015); DRBF was 

compared to the dynamic Kriging of Zhao et al. (2011) focusing on the performance of 

sequential surrogate-based analyses versus standard metamodel applications. DRBF has 

then been extended to optimization in Diez et al. (2015b) and applied in a multi-fidelity 

framework in Pellegrini at al. (2018). 

The accuracy and efficiency of metamodels depend on several concurrent issues, 

such as the dimensionality of the problem, the noisy or smooth nature of the function, and 

the sampling method for its training (Matsumura et al. 2015). These should be carefully 

addressed in the optimization process. The sampling of the design space needs to be 

efficient and effective, possibly achieving two competitive goals: an adequate global 

accuracy of the surrogate model (especially when a global optimum is sought), and a fine 

investigation of promising design regions (Booker et al. 2009). Sampling defined a priori 

can hardly achieve these goals. For this reason, adaptive sampling techniques have been 

developed, which adjust to the specific function. The literature proposes a variety of 

adaptive sampling criteria. Some examples include: the Kushner’s criterion (Kushner 

1964), which maximizes the probability of improving the objective; the expected 

improvement criterion, used in the efficient global optimization (EGO) algorithm (Jones et 

al. 1998); the lower confidence bounding function (Cox 1997), which minimizes the linear 

combination of surrogate model prediction and surrogate model uncertainty; locating the 

threshold-bounded extreme, locating the regional extreme, and minimizing surprises 

presented by Watson and Barnes (1995). A multi-criterion adaptive sampling (MCAS) 
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method that recast the sampling problem as a multi-objective optimization problem has 

been presented in Diez et al. (2015b). The MCAS uses a surrogate model and its prediction 

uncertainty to identify promising regions of the design space balancing out search for the 

optimum and improvement of surrogate model accuracy. The method has been extended 

to multidisciplinary problems in Volpi et al. (2017) combining surrogate model prediction 

uncertainty and MDA coupling uncertainty. The method has been found promising 

allowing for an efficient global approach to MDO. Generally, the adaptive sampling 

approach significantly affects the optimization efficiency and plays a critical role, 

especially for complex industrial applications. 

Derivative-free global optimization 

Although surrogate models are often used in solving MDO and, in general, complex 

SBDO, gradient-based optimization algorithms are not always employed. Algorithms’ 

developments often require benchmark solutions which need to be achieved through a 

direct connection between optimization algorithms and simulation tools. Additionally, 

depending of the metamodeling technique, derivatives may not be always available. 

Efficient derivative-free algorithms are especially required when fine search regions are 

not known a priori and a global approach is used. 

In the last decade, global derivative-free optimization research focused on 

metaheuristics. Methods as particle swarm optimization (PSO, Kennedy and Eberhart 

1995) and ant colony optimization (ACO, Dorigo et al. 1996) have been extensively 

applied along with more recent algorithms such as firefly algorithm (FA, Yang 2010a), 

cuckoo search (CS, Yang and Deb 2009), and bat algorithm (BA, Yang 2010b). Given the 

stochastic nature of typical metaheuristics implementations, extensive numerical 

campaigns are needed to achieve statistically significant results. Since this approach is 

generally computationally unaffordable when using expensive solvers, deterministic 

versions of global derivative-free algorithms, such as deterministic PSO (DPSO, Serani et 

al. 2014), have been developed and applied in SBDO. 

Efficient converge to the global optimum, possibly balancing global and local 

search, is highly problem dependent and still remains an open issue for all algorithms 

especially when solving new problems for which previous experience cannot be used. 



www.manaraa.com

10  
	

Design space dimensionality reduction 

Theory and mathematical derivation of dimensionality-reduction techniques is very 

limited, especially for continuous shape-design representation based on design variability 

analysis. Very few applications to simulation-based shape optimization of complex 

industrial problems by design-space dimensionality reduction are available from the 

literature. Generally, dimensionality reduction techniques can be classified as either on-

line or off-line. On-line techniques requires the evaluation of the objective function or its 

gradient. They improve the optimization efficiency but do not give an assessment of the 

design space before the evaluation of the objective function. On the contrary, off-line 

methods provide the shape modification variability beforehand and assist the designer in 

the definition of design space and reduce dimensionality model. 

Some recent research focused on design space variability and dimensionality 

reduction using the Karhunen–Loève expansion (KLE, also known as proper orthogonal 

decomposition). KLE has been used for representing distributed geometrical uncertainties 

and building a reduced-order spatial model for uncertainty quantification (Borzì et al. 2010, 

Schillings et al. 2011). An off-line quantitative approach based on KLE to assess the shape 

modification variability and build a reduced dimensionality global model of the design 

space is given in Diez et al. (2014), and used for metamodel-based high-fidelity 

optimization of a high-speed catamaran in Chen et al. (2015). The formulation is given in 

discrete form and relies on confidence levels for the geometric variance. A continuum 

description of the method is given in Diez et al. (2015a). Diez et al. (2016b) extended the 

method including physics-based information in the dimensionality reduction process; 

distributed shape modification and distributed/concentrated physical parameters obtained 

with a low-fidelity solver are combined into the formulation, which is still off-line with 

respect to the higher-fidelity function evaluations used in the optimization. Recently, 

nonlinear methods have been applied to design space dimensionality reduction in the 

SBDO context. For instance, D’Agostino et al. (2018a, 2018b) and Serani et al. (2018) 

propose kernel and local principal component analysis and deep autoencoders (DAE) as 

nonlinear extension of KLE. 

The tradeoff between using shape-based methods (computationally very efficient, 

but possibly not accurate) and combined shape- and physics-based methods (more 
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accurate, but computationally expensive) is still an open issue that need to be addressed 

carefully, depending on the application, the design space, and the physical phenomena 

involved. 

Hydro-structural analysis and optimization in naval engineering 

Naval engineering research on hydro-structural dynamics has been moving from 

employing semi-analytical and low-fidelity methodologies to using high-fidelity numerical 

solvers such as RANS-based CFD and FE. 

Numerical investigations of FSI mainly focuses on appendages and propeller blades 

(for instance, Ducoin and Young 2013, Kumar and Wurm 2015) and ship slamming (for 

instance, Oberhagemann et al. 2009, Paik et al. 2009, Stenius et al. 2011, Piro and Maki 

2013). Volpi et al. (2015b, 2016, 2017b) show composite material bottom panel slamming 

of a fast planing hull. These studies use unsteady tightly coupled FSI simulations, based 

on CFD and FE, aiming at validation against full scale experimental data in real sea 

conditions, with associated large uncertainty, achieving reasonable agreement. The same 

FSI approach to fast craft slamming is used by Weil et al. (2018) that obtain error and 

uncertainty reduction with respect to earlier studies by validation using laboratory 

experiments in model scale. 

Examples of CFD-based hydrodynamic optimization methodologies and results 

may be found for surface ships (Duvigneau and Visonneau 2004), appendages, energy 

saving devices, and propellers. Kandasamy et al. (2013), Chen et al. (2015), and Diez et al. 

(2015a) present shape optimization of a high-speed catamaran. The same application is 

studied by Diez et al. (2013) and Tahara et al. (2014) that perform stochastic optimization. 

The shape optimization of a tapered NACA 0009 hydrofoil is presented in Garg et al. 

(2015). 

For naval hydro-structural optimization using high-fidelity solvers, a limited 

literature is available. Garg et al. (2017) extends the hydrofoil analysis to shape MDO 

comparing single- and multi-point optimizations in order to address off design conditions. 

Single- and multi-disciplinary optimization of industrial applications by high-fidelity 

solvers is still limited and represents a computational challenge. 
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Shortcomings of earlier research 

Most MDO applications use gradient-based optimization which requires gradient 

approximations or adjoint solvers. For instance, Garg et al. (2017), in studying the same 

application considered in the current research, but limited to metal hydrofoils, use the 

adjoint method for both the CFD and the FE solvers, effectively supporting the use of 

gradient-based optimization. Although this approach is generally efficient, it can be applied 

only when source code and/or state variables from the discipline solvers are accessible. 

This leads to a significantly difficult integration of black-box solvers such as well-assessed 

high-fidelity software. When this type of comprehensive codes cannot be used, the 

application of MDO to complex industrial problems is limited by the capabilities of in-

house analysis tools. Also, gradient-based optimization is usually applied in a local fashion, 

limiting the use of a global approach to optimization. 

MDO efficiency, especially when using surrogate models, is strongly affected by 

the number of design variables, often referred to as the “curse of dimensionality,” which is 

a practical constraint designers have to deal with that limits the exploration of original 

designs. 

Objective 

The objective of the present work is the development and assessment of a surrogate-

based MDO architecture performing global derivative-free optimization and characterized 

by software modularity, allowing for the use of pre-existing specialized (high-fidelity) 

discipline solvers. In the present formulation, the multidisciplinary problem is FSI which 

is evaluated using expensive black-box solvers. The architecture is applied to the design of 

a composite material naval structure aiming at improving the hydrodynamic performance. 

The final design will feature optimized shape and optimized composite material layout. 

Approach 

The novel MDO architecture is called multi-criterion adaptive sampling MDO 

(MCAS-MDO). The identification of the optimal design is achieved by sequential 

surrogate-based optimizations. At the beginning of the process, the surrogate model is 

trained by MDA evaluations whose distribution in the design space is given by a priori 

sampling technique. Successive iterations are driven by the multidisciplinary MCAS which 



www.manaraa.com

13  
	

balance out objective function value, surrogate model uncertainty, and MDA coupling 

uncertainty. As the optimization advances, MCAS yields refinements of the 

multidisciplinary consistency and further exploration of the design space. The full 

multidisciplinary consistency is achieved at the end of the optimization process; however, 

it is guaranteed at some extent at each iteration. The efficiency of the process is enhanced 

using an off-line design space dimensionality reduction by KLE based on purely 

geometrical considerations and combining distributed and concentrated parameters. The 

KLE uses a free-form deformation (FFD, Sederberg and Parry 1986) method to generate 

the shape modifications. MCAS-MDO performance is evaluated on analytical test 

problems by comparison with derivative-free MDF.  

The application is the design of a NACA 0009 hydrofoil in composite material. The 

structure is made of a sandwich panel with layers of carbon fiber reinforced plastic (CFRP) 

and a foam core. For comparison purposes, the optimization is carried out also for a 

geometrically equivalent hydrofoil model made in aluminum. A steady partitioned two-

way coupled FSI evaluates the hydro-structural behavior by Gauss-Seidl iterations. The 

associated coupling uncertainty is quantified by the difference between MDA iterations. 

The surrogate model is based on DRBF, which gives both the function prediction and its 

uncertainty. A multi-objective DPSO is embedded into the MCAS to handle the sampling 

by providing the optimum of the surrogate model and new infill points. 

Preliminary hydrodynamic, structural, and FSI studies for the NACA 0009 

hydrofoil in stainless steel, aluminum, and two CFRP models allow performing validation 

and verification of the computational grids and assessing the hydro-structural behavior of 

different materials. 
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CHAPTER 2:  NUMERICAL METHODS 

Hydrodynamics 

The unsteady RANS (URANS) and the detached eddy simulation equations (DES) 

are used to model the hydrodynamics. The equations are solved numerically using the CFD 

code CFDShip-Iowa V4.5, developed at the University of Iowa (Huang et al. 2008). The 

set of governing equations for a fluid includes conservation of mass, i.e. continuity, and 

conservation of momentum (RANS equations). 

 ∇ ∙ 𝐮 = 0 (1) 

 
𝜕𝐮
𝜕𝑡 + 𝐮 ∙ ∇𝐮 = −∇𝑝 + ∇ ∙

1
Re.//

∇𝐮 + ∇𝐮0 + 𝐬 (2) 

u is the velocity vector, s is source term that accounts for the body force, p is the non-

dimensional piezometric pressure defined as 

 𝑝 =
𝑝234
𝜌𝑈78

+
𝑧
Fr8 +

2𝑘
3  (3) 

The effective Reynolds number and Froude number are 

 Re.// =
𝑈7𝐿
𝜈 + 𝜈A

													Fr =
𝑈7
𝑔𝐿

 (4) 

The turbulence is modeled by the isotropic Menter’s blended k-ω/k-ε model or the 

anisotropic algebraic Reynolds stress (ARS). The ARS model is based on a modified 

version of the Menter’s approach which is used as the scale determining model; an explicit 

algebraic Reynolds stress model is introduced as constitutive relation in place of the 

Boussinesq hypothesis. The ARS model is also extended to ARS-DES. The approach 

modifies the dissipative term of the transport equation of the turbulent kinetic energy k and 

determines where a large eddy simulation (LES) or URANS will be applied. Inside the 

boundary layer of a wall or inside a region where no separation occurs, the URANS is used. 

When the flow separates, vortices generate a significant increase of k and LES is used. k is 

computed using a blended k-ω/k-ε model as per 
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𝜕𝑘
𝜕𝑡 + 𝐮 − 𝜎E∇𝜈A ∙ ∇𝑘 −

1
𝑃E
∇8𝑘 + 𝑠E = 0 (5) 

 
𝜕𝜔
𝜕𝑡 + 𝐮 − 𝜎I∇𝜈A ∙ ∇𝜔 −

1
𝑃I
∇8𝜔 + 𝑠I = 0 (6) 

where ω is the specific dissipation rate,	𝜎E and 𝜎I are constants, and 𝜈A = 𝑘/𝜔 is the 

turbulent viscosity. The source terms are defined as 

 𝑠E = 𝑅E −𝐺 + 𝛽∗𝜔𝑘  (7) 

 𝑠I = 𝑅I −𝛾
𝜔
𝑘 𝐺 + 𝛽𝜔

8 + 2(1 − 𝐹R)𝜎I8
1
𝜔
𝜕𝑘
𝜕𝑥U

𝜕𝜔
𝜕𝑥U

 (8) 

𝛽, 𝛽∗, and 𝜎I8 are constants and G is 

 
𝐺 = 𝜏WU

𝜕𝑢W
𝜕𝑥U

= 𝜈A 𝑢Y + 𝑣[
8 + 𝑢\ + 𝑤[ 8 + 𝑣\ + 𝑤Y

8
 

+𝜈A 2𝑢[8 + 2𝑣Y8 + 2𝑤\8  

(9) 

F1 is a blending function designed to take advantage of the strength of either the k-ω or k-

ε model in different positions of the space. To accomplish this, F1 is equal to the unit in the 

sub-layer and logarithmic regions of boundary layers and gradually switches to zero in the 

wake region. Each model constant ai is calculated from the standard k-ω and k-ε values 

using the blending function 

 𝑎W = 𝐹R𝑎W,E`I + (1 − 𝐹R)𝑎W,E`a (10) 

DES based on the k-ω/k-ε turbulence model is used to model regions of massively 

separated flows. The dissipative term of the k-transport equation is modified as 

 𝐷cdefE = 𝜌𝛽∗𝑘𝜔 = gE
h
i

jklm
    and   𝐷nofE = gE

h
i

j
 (11) 

where the length scale is chosen from the length scale of the k-ω model and the 

characteristic grid size Δ as 𝑙 = min(𝑙E`I, 𝐶nof∆), with 𝑙E`I = 𝑘
v
i/(𝛽∗𝜔) and CDES = 

0.65. 

The numerical solution strategy employed by CFDShip-Iowa V4.5 is depicted in 

the block diagram of Figure 4 including the fully implicit predictor-corrector methods used 
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for determining the motions in case of moving structure simulation (air/marine vehicles) 

and semi-coupled air/water method for free surface applications.  

Finite difference schemes are used on body-fitted curvilinear grids to discretize the 

continuum equations with second order implicit Euler backward difference time 

integration. The convective velocities are linearized when solving the momentum 

equations, but are changed within the nonlinear iteration loop to account for nonlinearities 

from turbulence equations, nonlinear momentum transport, etc. The spatial discretization 

of the convection terms uses a second-order upwind scheme. The diffusion and pressure 

terms in the momentum equations are discretized using a second order central scheme. The 

temporal and spatial discretizations for the k−ω/k−ε equations are consistent with the 

momentum equations. Finally, the projection algorithm is used to couple the momentum 

and continuity equations. Details of numerical methods can be found in Huang et al. (2008). 
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Figure 4: CFDShip-Iowa solution strategy diagram (Huang et al. 2008)
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Structural dynamics 

Modal analysis 

The modal analysis aims at identifying the natural modes of vibration of the 

structure and the associated natural frequencies. A finite number of modes of interest may 

be determined numerically using FE. Herein, the commercial code ANSYS Mechanical 

APDL V14.5 is used. 

The structure equation of motion is 

 𝜌 𝐱 𝛅 𝐱, 𝑡 + 𝐶𝛅 𝐱, 𝑡 + ℒ𝛅 𝐱, 𝑡 = 𝐟(𝐱, 𝑡) (12) 

where 𝜌 is the density,	𝛅 is the displacement vector, 𝐱 is the position vector, 𝑡 is time, 𝐶 is 

the damping operator, ℒ is the structural operator, and 𝐟 is the load source term. Assume 

that there are no forces acting on the structure. If the structure vibrates with harmonic 

motion, the shape of vibrating structure is the natural mode of vibration and the 

corresponding frequency is the natural frequency. The natural modes 𝛗W, or eigenfunctions 

of the operator ℒ, are solution of the eigenproblem 

 ℒ𝛗W = 𝜆W𝛗W (13) 

where 𝜆W are the eigenvalues and are associated with the natural frequencies 𝜔W. 

By discretization using FE, Eq. 12 becomes 

 𝐌𝛅 + 𝐂𝛅 + 𝐊𝛅 = 𝐅 (14) 

where 𝐌, 𝐂, and 𝐊 are mass, damping and stiffness matrices, respectively, whereas 𝐅 is the 

load matrix. ANSYS is used to predict 𝛗W and 𝜔W by solving the un-damped homogeneous 

governing equations 

 𝐌𝛅 + 𝐊𝛅 = 𝟎 (15) 

derived from Eq. 12. The solution is obtained using the discretized eigenvalue problem 

 −𝜔W8𝐌 + 𝐊 𝛗W = 𝟎 (16) 

The results of the analysis are 𝛗W and 𝜔W of the structure in vacuum, which are 

called dry modes. The identification of the wet modes, which are the natural frequencies 

and mode shapes of the structure when immersed in a medium, can be performed in 
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ANSYS by embedding the body in a fluid domain modeled by acoustic elements. The 

presence of the fluid is represented using an additional damping term in Eq. 15. The 

acoustic domain accounts for the added mass effects due to the presence of a fluid. 

Static analysis 

A static analysis quantifies the effects of steady loading conditions on a structure 

without considering inertia and damping effects. The governing equation, derived from Eq. 

12, is 

 ℒ𝛅 𝐱 = 𝐟(𝐱) (17) 

According to Eq. 17, the discretized FE equation solved by ANSYS for a static 

analysis is  

 𝐊𝛅 = 𝐅 (18) 

Fluid-structure interaction 

In multidisciplinary environments, such as FSI problems that employ partitioned 

approaches, discipline solvers need to be coupled aiming at a proper representation of the 

multidisciplinary physics. The coupling can be performed using Gauss-Seidl iterations 

where the CFD analysis is carried out first until convergence and the CSD analysis uses 

the hydrodynamic load to compute the deformation. 

Within a one-way FSI approach, structural displacements are not fed back into the 

fluid solver. Figure 5 depicts a diagram of the implementation of the one-way coupling 

using CFDShip-Iowa and ANSYS finite elements. Since fluid and structure grids are 

generally non-matching, an interpolation algorithm is required to transfer the 

hydrodynamic load to the structural model, i.e. calculating the term 𝐟 in Eq. 12. Herein, 

Gaussian interpolation of the hydrodynamic load on the structural nodes is performed at 

each iteration. The method conserves energy and momentum only asymptotically, namely 

for time step and grid size tending to zero.  

In a tightly coupled two-way approach, represented in Figure 6, fluid and structural 

solvers exchange hydrodynamic load 𝐟 and structural displacement 𝛅 and velocities 𝛅 until 

convergence, in an inner loop within each time step. Along with the interpolation of 𝐟 onto 

the structure grid, the two-way approach requires also the deformation of the fluid grid 
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according to the structural displacement, within each time step. The grid deforms in a two-

step process. The fluid volume grid is structured with indices I, J, and K, where J = 1 

corresponds the fluid-solid interface. First, the J = 1 surface is deformed by interpolation 

from the structure grid. Then, the volume inner nodes are morphed by linear interpolation 

between interface (J = 1) and outer (J = JMAX) boundary layer surface as 

 𝐱 = 𝐱7 +
𝑙∗ − 𝑙
𝑙∗ 𝛅W�A (19) 

where 𝐱7 is the original coordinate of the node, 𝐱 is the modified position, 𝛅��� is the 

displacement at the interface, 𝑙 is the distance between the volume node and the interface 

node, and 𝑙∗ is the distance between outer and interface node; 𝑙 and 𝑙∗ are computed as girth 

length along the grid line with constant I and K.
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Figure 5: Diagram of the one-way FSI routine 

using CFDShip-Iowa and ANSYS 

 
Figure 6: Diagram of the two-way FSI routine 

using CFDShip-Iowa and ANSYS 
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Multidisciplinary design optimization 

This section provides detailed descriptions of the methods used in the MCAS-MDO 

framework starting from the problem formulation and including architecture, surrogate 

model, sampling approach, optimization algorithm, shape modification, and 

dimensionality reduction. 

Formulation 

The formulation of the multidisciplinary design optimization problem involving 

fluid dynamics and structural mechanics is  

 min
𝐮
𝑓 𝐮, 𝐲(𝐮, 𝐲)  (20) 

 subject to  𝐜7 𝐮, 𝐲(𝐮, 𝐲) ≤ 0 (21) 

  𝐜� 𝐮7, 𝐮�, 𝐲�(𝐮7, 𝐮�, 𝐲f) ≤ 0 (22) 

  𝐜f 𝐮7, 𝐮f, 𝐲f(𝐮7, 𝐮f, 𝐲�) ≤ 0 (23) 

where 𝑓 is the objective function, 𝐜 are the constraint functions, 𝐮 is the set of design 

variables, and 𝐲 is the set of coupling variables, i.e. the responses of the discipline analyses 

to the specific design. The subscript 	(∙)7 denotes a variable/function shared by the 

disciplines; the subscript (∙)� denotes that the variable/function pertains exclusively to the 

fluid analysis, while the subscript (∙)f refers to the structural analysis. The number of 

constraints is 𝑁� = 𝑁�7 + 𝑁�� + 𝑁�f. This formulation resembles a general non-linear 

programming problem. 

To employ a global derivative-free optimization algorithm, the constrained 

optimization problem in Eq. 20 to 23 is recast as unconstrained optimization. The 

inequality constraints 𝐜 are integrated in a new penalized objective function 𝑓� as linear 

penalty functions weighted by the coefficient 𝛾: 

 min
𝐮
𝑓� 𝐮, 𝐲(𝐮, 𝐲)  (24) 

 𝑓� 𝐮, 𝐲(𝐮, 𝐲) = 𝑓 𝐮, 𝐲(𝐮, 𝐲) + 𝛾 max	 𝐜7 𝐮, 𝐲(𝐮, 𝐲) , 0
e��

W�R

 (25) 
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+𝛾 max	 𝐜� 𝐮7, 𝐮�, 𝐲�(𝐮7, 𝐮�, 𝐲f) , 0
e��

W�R

+ 𝛾 max	 𝐜f 𝐮7, 𝐮f, 𝐲𝑺(𝐮7, 𝐮f, 𝐲𝑭) , 0
e��

W�R

 

Architecture 

The framework of MCAS-MDO is monolithic, solving a single optimization 

problem at the system level. The surrogate model is built over the entire design space 

allowing for the use of a global optimization algorithm. The MCAS produces iteratively 

sets of new samples to enrich the surrogate model training set. The samples are evaluated 

by the MDA tool with a loose coupling approach. The design space is explored by infill of 

new samples. As the optimization advances, the accuracy of the surrogate is increased by 

tightening the coupling in the MDA at available training points located in promising 

regions of the design space. Figure 7 depicts a standard approach to MDO in the form of a 

MDF architecture. The optimizer handles the procedure by calling directly the MDA tool 

and using the objective/constraint function values to locate the optimum. Figure 8 depicts 

the MCAS-MDO, where the adaptive sampling calls the MDA tool and drives the 

sequential optimizations based on the surrogate model of the objective/constraint 

functions. 

 
Figure 7: MDF architecture 

Initial guess

Solution

Optimization

Objective and 
constraint functions

MDA

Fluid

Structure
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Figure 8: MCAS-MDO architecture 

As follows, a general form of the algorithm, introducing the nomenclature adopted, 

is presented.  

1. Apply a (non-adaptive) sampling technique over the design space. The training set 

obtained is indicated by 𝐮WA�2W� W�R
�

. 

2. Perform a loosely-coupled MDA at 𝐮WA�2W� W�R
�

 to evaluate 𝐲. 

3. Compute 𝑓 and 𝐜 based on 𝐲 and assess their coupling uncertainties 𝑈�,/ and 𝑈�,�. 

4. Compute 𝑓� and its coupling uncertainty 𝑈� = 𝑈�,/8 + 𝑈�,��8e�
W�R . 

5. Initialize the optimum as the best solution among available training points. 𝐮∗ =

argmin	 𝑓� 𝐮WA�2W� W�R
�

 and 𝑓�
∗ = min	 𝑓� 𝐮WA�2W� W�R

�
. 

6. Build surrogate models trained by 𝐮WA�2W� W�R
�

 for 𝑓 and 𝐜 and assess the surrogate 

model uncertainties 𝑈4,/ and 𝐔4,�. 

7. Compute the prediction 𝑓� based on the surrogate models and its uncertainty, from now 

on referred to as sampling uncertainty, 𝑈4 = 𝑈4,/8 + 𝑈4,��8e�
W�R . 

8. Using 𝑓� 𝐮WA�2W� , 𝑈� 𝐮WA�2W� , 𝑓� 𝐮 , and 𝑈4 𝐮 , apply the adaptive sampling 

technique to find: 

Sampling

Surrogate model Objective and 
constraint functions

MDA

Fluid

Structure

Optimization

Initial guess

Solution
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§ a set of new samples 𝐮W
W�/Wjj

W�R

�
, 

§ a subset 𝐮WA�2W� W�R
�

 of the training set whose function value accuracy is to be 

improved, 

§ the optimum predicted by the metamodel 𝐮∗. 

9. If 𝐮∗ ≠ 𝐮WA�2W� for all 𝑖, evaluate 𝑓� and 𝑈� at 𝐮∗	following points 2, 3, and 4. 

10. Evaluate 𝑓� and 𝑈� at 𝐮W
W�/Wjj

W�R

�
 following points 2, 3, and 4. 

11. Iterate the MDA at 𝐮WA�2W� W�R
�

 for new 𝐲 with improved multidisciplinary consistency. 

12. Compute 𝑓� and 𝑈� at 𝐮WA�2W� W�R
�

 following points 3 and 4. 

13. Update the optimum 𝐮∗ if any 𝑓�	at 𝐮∗, 𝐮W
W�/Wjj

W�R

�
, or 𝐮WA�2W� W�R

�
 improves the current 

solution. 

14. Update the training set: 

§  

§ the 𝐼 new infill points are added, therefore the training set size increases from 

the current 𝑀 to 𝑀 + 𝐼, 

§ the function values and uncertainties at the 𝐶 training points are updated. 

15. Repeat step 6 to 14 until convergence of 𝐮∗ 

As described, the methodology does not prescribe a fixed number of disciplines nor 

it imposes the use of specific MDA, surrogate, or sampling/optimization techniques. The 

choice of them depend on the application at hand and can be tailored to take advantage of 

software already available to the designer. Herein, the Hammersley Sequence Sampling 

(HSS) is used as non-adaptive sampling method, the DRBF is used as surrogate model, the 

MCAS is used as adaptive sampling technique, and DPSO is the optimization algorithm. 

Dynamic radial basis functions 

Given a set of 𝑀 training points 𝐮WA�2W� W�R
�

 with associated function evaluations 

𝐟A�2W� = 𝑓WA�2W� W�R
�

, a linear combination of RBF provides the prediction of the objective 

function as 
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 𝑓c¢� 𝐮, 𝜀 = 𝑤W𝜓 𝐮 − 𝐮WA�2W� , 𝜀
�

W�R

 (26) 

where 𝜓 is the RBF kernel, 𝜀 ∈ ℝ is the tuning parameter of the specific kernel, and 

𝐰 = 𝑤W W�R
�  is solution of the linear system that provides exact prediction at 𝐮 = 𝐮WA�2W� 

 𝐀𝐰 = 𝐟A�2W� (27) 

with  𝑎WU = 𝜓 𝐮WA�2W� − 𝐮UA�2W� , 𝜀 . 

The DRBF model provides the prediction of the function 𝑓 𝐮  as the expected 

value of a sample of RBF predictions 𝑓c¢� 𝐮, 𝜀E  over a stochastic distribution of 𝜀E as 

 𝑓 𝐮 = EV 𝑓c¢� 𝐮, 𝜀E  (28) 

with 𝜀E E�R
e«  uniformly distributed between 𝜀¬W� and 𝜀¬2[.  

Sampling and coupling uncertainty quantification 

The sampling uncertainty 𝑈4(𝐮), is quantified by the 95% confident band of 

𝑓c¢� 𝐮, 𝜀E . It is defined over the entire design space. 

The coupling uncertainty 𝑈�(𝐮) does not depend on the surrogate model but stems 

from not satisfying the multidisciplinary equilibrium. 𝑈� decreases as the discipline 

interaction tightens, i.e. as the mutual exchange of structural and fluid solutions approaches 

convergence. The accuracy of a loose multidisciplinary solution generally depends on the 

specific design. Stiffer structures may show little difference in the MDA solution between 

a loose and a tight coupling. On the opposite, compliant structures may show significant 

coupling effects and difference between loose and tight coupling. Herein, 𝑈� is quantified 

as the difference in objective function between two consecutive MDA iterations. 𝑈� exists 

only at the training points where the MDA is solved. 

Multi-criterion adaptive sampling 

MCAS aims at balancing search for the global minimizer and surrogate model 

accuracy. In case of single-discipline optimization, this is pursued by solving the multi-

objective optimization problem: 
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 min
𝐮
𝑓�(𝐮)   and   min

𝐮
𝑈(𝐮) (29) 

where 𝑈 is the surrogate model uncertainty 𝑈4. The Pareto set ℘ with size 𝑁℘ obtained 

from solving Eq. 29 is down-sampled to identify 𝐼 equally spaced points along the 

curvilinear coordinate. A one-dimensional example is given in Figure 9. On the left, the 

surrogate model prediction and its uncertainty band are depicted showing the zero-valued 

𝑈4 at the training points. On the right, the solution of Eq. 29 is presented in the 𝑓-𝑈 space 

showing the selection of infill points along the Pareto frontier. 

 
Figure 9: Single-discipline MCAS 

In view of the fact that: (a) sampling too close to available training points does not 

add useful information to the analysis, (b) as the distance between training points decreases, 

Eq. 27 may result ill-conditioned, and (c) the uncertainty at the training points is zero, ℘ is 

reduced to eliminate points with 𝑈 smaller than a user-defined 𝑢®�� threshold. 

Since ℘ may have a strongly irregular distribution, the down-sampling procedure 

requires careful application. To tackle this task, the following algorithm is proposed: 

1. ℘ points are ordered with increasing 𝑓. 

2. The position 𝜉W W�R
e℘  of the ℘ points, defined initially by 𝑓W, 𝑈W W�R

e℘ , along the 

curvilinear coordinate representing the Pareto frontier is computed. The total length 

𝑙℘	of ℘ is also evaluated. 

!
Pareto solutions

Pareto frontier

Infill points

"

Training point

Sampling uncertainty !# $
Metamodel "% $

& "%



www.manaraa.com

28  
	

3. The position of 𝐼∗ equally spaced samples 𝜒U	is determined along 𝜉; the ideal distance 

between 𝜒U and 𝜒U±R is 𝑑 = 𝑙℘/(𝑁℘ − 1). 𝐼∗ is set equal to 𝐼 at the beginning of the 

procedure. 

4. The distance 𝐷W,U	between each 𝜉W and each 𝜒U is computed 

5. The 𝐼∗ ℘ points 𝜉³ closest to the 𝜒U ideal sample locations (i.e. the locations with 

minimum 𝐷W,U) are identified. 

6. If 𝐷W,U ≥ 𝑑/2 at any 𝜉³, 𝐼∗ is increased by 1 and the process is repeated from step 3. 

7. If 𝐷W,U < 𝑑/2 at all 𝜉³, then 𝜉³ are ordered with increasing 𝐷W,U. 

8. The first 𝐼 𝜉³ with minimum 𝐷W,U are selected as new infill points. 

 
Figure 10: Multidisciplinary MCAS 

In case of multidisciplinary problems, the adaptive sampling technique accounts 

for both 𝑈4 and 𝑈�. Two independent Pareto fronts, ℘4 and ℘�, are built, according to Eq. 

29, using 𝑈 = 𝑈4 and 𝑈 = 𝑈�. An illustrative example for a one-dimensional problem is 

depicted in Figure 10. The two sets (black squares for ℘4, blue triangles for ℘�) are 

superposed in the objective function space and a new Pareto set ℘ is defined taking the 

non-dominated solutions in the sample ℘4 ∪ ℘�. ℘ is then treated as described above for 

the single-discipline MCAS keeping track of the original Pareto set of each point. If a 

sample originally belonged to ℘4, it contributes to the set of new infill points 𝐮W
W�/Wjj

W�R

�
. 
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Otherwise, if it belonged to ℘�, it contributes to 𝐮WA�2W� W�R
�

, where the MDA is to be 

iterated. 

In order to improve the numerical stability in solving Eq. 27 and the efficiency in 

the search of the optimum, two additional sampling criteria are applied to ℘ before down-

sampling: a threshold for the minimum distance among potential infill samples ∆¬W� to 

prevents oversampling, and a threshold for the maximum function value 𝑓 < 𝑓∗ +

𝑈48 + 𝑈4∗8, where (∙)∗ indicates the current optimum predicted, to prevent sampling in 

regions with large objective function values. 

Deterministic particle swarm optimization 

In order to make PSO more efficient for its use within SBDO, a deterministic 

version of the algorithm (DPSO) was formulated by Campana et al. (2009) as follows  

 
𝐯WE±R = 𝑐7 𝐯WE + 𝑐R 𝐮W,�3 − 𝐮WE + 𝑐8 𝐮¹3 − 𝐮WE

𝐮WE±R = 𝐮WE + 𝐯WE±R																																																								
 (30) 

The system gives velocity 𝐯 and position 𝐮 of the 𝑖th particle at the 𝑘th iteration. 

Particles are attracted by the personal best position 𝐮W,�3 ever found by the 𝑖th particle, and 

by the global best position 𝐮¹3 ever found by all particles. The effectiveness of DPSO 

depends on the constriction factor 𝑐7, the social and cognitive learning rate 𝑐R and 𝑐8, along 

with the number of individuals 𝑁� and their initial distribution and velocity. Serani et al. 

(2014) investigate the effect of such parameters and propose guidelines for an efficient use 

of the algorithm, in the context of ship hydrodynamic optimization. The extension of DPSO 

to multi-objective problems can be found for instance in Pellegrini et al. (2014). This is 

based on extending the definition of the personal and global best in the Pareto-optimality 

sense. Specifically, the personal attractor 𝐮W,�3 is the closest point to 𝐮W of the personal 

Pareto front. The global attractor 𝐮W,¹3 is different for each particle and defined as the 

closest point to 𝐮W of the global Pareto front. 

Shape modification: free-form deformation 

The FFD is selected as shape modification technique similarly to Garg et al. (2015, 

2017). FFD refers to the deformation of the space containing the body under investigation. 
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A trapezoidal prism that embeds the body defines the space. A coordinate system is 

assumed, with origin 𝐱7 at one of the prism vertices. Any point within the prism has 𝑠, 𝑡, 

and 𝑢 coordinates such that 

 𝐱 = 𝐱7 + 𝑠𝐬 + 𝑡𝐭 + 𝑢𝐮 (31) 

with 𝑠, 𝑡, and 𝑢 bounded by [0,1] and given by 

 𝑠 =
𝐭×𝐮 ∙ (𝐱 − 𝐱7)

𝐭×𝐮 ∙ 𝐬
										𝑡 =

𝐬×𝐮 ∙ (𝐱 − 𝐱7)
𝐬×𝐮 ∙ 𝐭

										𝑢 =
𝐬×𝐭 ∙ (𝐱 − 𝐱7)

𝐬×𝐭 ∙ 𝐮
 (32) 

Control points are distributed over a grid, compliant with the trapezoidal space. The 

number of points assigned in the 𝐬, 𝐭, and 𝐮 directions are 𝑙 + 1, 𝑚 + 1, and 𝑛 + 1, 

respectively. The location of the 𝑖𝑗𝑘 control point is given by 

 𝐏WUE = 𝐱7 +
𝑖
𝑙 𝐬 +

𝑗
𝑚 𝐭 +

𝑘
𝑛 𝐮 (33) 

The shape modification is performed by moving the control points and interpolating 

the modification over the embedding space. The interpolation can be performed  using 

different polynomial bases. Herein, a tensor product of trivariate Bernstein polynomial is 

used, following Sederberg and Parry (1986): 

 𝐱��n =
𝑙
𝑖

j

W�7

(1 − 𝑠)j`W𝑠W
𝑚
𝑗

¬

W�7

(1 − 𝑡)¬`U𝑡U 𝑛
𝑘

�

W�7

(1 − 𝑢)�`E𝑢E  (34) 

Design space analysis 

In the shape optimization of a simple structure such as a three-dimensional 

hydrofoil, the choice of the design variables plays a key role. Potential design 

improvements significantly depend on dimension and extension of the design space: high 

dimension and variability spaces are more difficult and expensive to explore but, at the 

same time, potentially allow for larger improvements. A set of design variables that can be 

used is the one that includes standard modifications of a wing-type structure. An example 

may be span length, chord length, thickness to chord ratio, twist angle at multiple stations 

along the span, and swept angle. The resulting number of design variables is potentially 

low allowing for computationally efficient optimization. Shortcomings arise from the 
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stiffness of the method, which does not allow for truly original design. Another possible 

choice of design variables comes from continuous parametrizations of the domain. This 

allows for a much larger design variability but often requires a large number of design 

variables, even prohibitive when expensive black-box functions are used for the MDA and 

global derivative-free optimization is performed.  

A dimensionality reduction technique is therefore applied in order to reduce the 

design space dimensionality for the shape optimization. The dimensionality reduction 

technique is based on the KLE and it is an off-line methodology. Once the tool for the 

geometry modification is chosen, with its associated design variables, the technique can be 

applied ahead of the optimization process based purely on geometrical considerations with 

no evaluation of objective function and sensitivities. The technique can be coupled with 

any geometry modification method. The dimensionality reduction is herein performed by 

application of the KLE on the geometry modifications given by FFD. A brief description 

of the KLE-based dimensionality reduction follows. A detailed analysis can be found in 

Diez et al. (2015a). 

Consider a geometric domain 𝐺, which identifies the initial shape, and a set of 

coordinates 𝐱 ∈ 𝐺. Generally, 𝐱 ∈ ℝ� with n = 1, 2, 3. Assume that the design variable 

vector is 𝐮 ∈ 𝑈. 𝐮 ∈ ℝ� where M is the number of design variables. Let 𝑈 be a stochastic 

space with associated probability density function 𝑓(𝐮). 

Let 𝛅 be the shape modification vector, i.e. a modification of the shape with respect 

to the initial one, corresponding to the design variable vector 𝐮. 𝛅 ∈ ℝ¬ with m = 1, 2, 3 

but not necessarily equal to n. 𝛅 belongs to the vector space of all possible square-integrable 

modifications of the initial space. Since 𝐮 belongs to a stochastic space, a mean shape 

modification can be defined by a generalized inner product 

 𝛅 = 𝜌 𝐱 𝛅 𝐱, 𝐮 𝑓 𝐮 	𝑑𝐮
À

 (35) 

where 𝜌 𝐱  is a weight function. 	∙	  represents an ensemble average over 𝐮 ∈ 𝑈. 

Accordingly, the variance of the shape modification vector, which will be referred to as 

geometric variance, is defined as 
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 𝜎8 = 𝛅 𝟐 = 𝜌 𝐱 𝛅 𝐱, 𝐮 ∙ 𝛅 𝐱, 𝐮 𝑓 𝐮 	𝑑𝐱	𝑑𝐮
ÂÀ

 (36) 

where 𝛅 = 𝛅 − 𝛅  is the deviation from the mean shape modification vector. 

The application of the KLE to the geometry modification aims at identifying an 

optimal basis of orthonormal functions 𝛗E for a linear representation of 𝛅 

 𝛅 𝐱, 𝐮 = 𝛼E(𝐮)𝛗E(𝐱)
Ä

E�R

 (37) 

The original design variables 𝐮 can therefore be substituted by the basis-function 

components 𝛼E, which are given by 

 𝛼E 𝐱 = 𝛅,𝛗E g
= 𝜌 𝐱 𝛅 𝐱, 𝐮 ∙ 𝛗E(𝐱)	𝑑𝐱

Â
 (38) 

The geometric variance of the KLE vector space of the modifications is obtained by 

substituting Eq. 37 and 38 in Eq. 36 

 𝜎8 = 𝛼E𝛼U 𝛗E,𝛗U g

Ä

U�R

Ä

E�R

= 𝛼U8
Ä

U�R

= 𝛅,𝛗U g
8

Ä

U�R

 (39) 

The basis retaining the maximum variance is formed by those 𝛗 solutions of the variational 

problem 

 max 		𝐽 𝛗 = 𝛅,𝛗
g
8

 
(40) 

 subject to  𝛗,𝛗 8 = 1 

which yields to 

 𝜌 𝐲 𝛅 𝐱, 𝐮 	⨂	𝛅 𝐲, 𝐮 𝛗(𝐲)	𝑑𝐲
Â

= 𝜆𝛗 𝐱  (41) 

Eq. 41 is an eigenproblem. The eigenfunctions 𝛗E E�R
Ä , also referred to as KL 

modes, are orthogonal and form a complete basis. The eigenvalues 𝜆E, also referred to as 

KL values, represent the variance retained by the associated basis function 𝛗E through its 

component 𝛼E. It may be proven that 
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 𝜎8 = 𝜆E

Ä

E�R

 (42) 

The reduced dimensionality space is built on the KL modes and values by 

truncating the combination to the Nth order, provided that 

 𝜆E

e

E�R

≥ 𝑙 𝜆E

Ä

E�R

= 𝑙𝜎8 (43) 

with 0 < 𝑙 ≤ 1 and 𝜆E ≥ 𝜆E±R.  

To determine numerically the KL modes and values, Eq. 41 needs to be discretized. 

𝛅 and 𝛗 are expressed in terms of components on a basis of orthogonal unit vectors 𝐞È È�R
¬

 

as 

 𝛅 𝐱, 𝐮 = 𝛿È(𝐱, 𝐮)𝐞È

𝒎

𝒒�𝟏

											𝛗 𝐱, 𝐮 = 𝜑È(𝐱)𝐞È

𝒎

𝒒�𝟏

 (44) 

The variable of integration 𝐲 is discretized using 𝐿 elements of measure ∆U and centroid at 

𝐱U with 𝑗 = 1,… , 𝐿. The solution 𝜑�(𝐱) is evaluated at the same element centroids. Define 

the following variables  

 𝐝� 𝐮 = 𝛿�(𝐱W, 𝐮)  (45) 

 𝐳� = 𝜑�(𝐱W)  (46) 

 𝐑�È = 𝐝� 𝐮 	 𝐝È 𝐮
0

 (47) 

 𝐖 = 𝜌 𝐱W ∆U	𝛿WU  (48) 

where 𝛿WU is the Kronecker delta. The discretized form of Eq. 41 is 

 𝐑�È𝐖 WU
𝐳� U

= 𝜆W 𝐳� U

Ó

U�R

¬

È�R

 (49) 

The problem can be written as 𝐀𝐳 = 	𝜆𝐳. This form can be solved numerically for 

the KL modes 𝐳 and the KL values 𝜆. The eigenvectors 𝐳E are used to build the reduced-

dimensionality discrete representation of 𝛅 as 
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 𝐝 =

𝛿R(𝐱R)
⋮

𝛿R(𝐱Ó)
⋮

𝛿¬(𝐱R)
⋮

𝛿¬(𝐱Ó)

≈ 𝛼E𝐳E

e

E�R

 (50) 

The ensemble average can be evaluated numerically by Monte Carlo sampling 

using a statistically converged number of random realizations 𝑆 of the design variables, 

𝐮� ��R
f . The 𝑟�Ø sample provides the shape modification  

 𝛄 =

𝛾R(𝐱R, 𝐮�)
⋮

𝛾R(𝐱Ó, 𝐮�)
⋮

𝛾¬(𝐱R, 𝐮�)
⋮

𝛾¬(𝐱Ó, 𝐮�)

 (51) 

The 𝑝�Ø component of the discretized deviation from the mean of the shape modification 

vector is then evaluated as per  

 𝐝� 𝐮� =
𝛾�(𝐱R, 𝐮�)

⋮
𝛾�(𝐱Ó, 𝐮�)

−
1
𝑆

𝛾�(𝐱R, 𝐮�)
⋮

𝛾�(𝐱Ó, 𝐮�)

f

��R

 (52) 

Accordingly, the submatrix 𝐑�È can be computed directly as 𝐑�È =
R
f
𝐃�𝐃È0, where 𝐃� is 

defined as 

 𝐃� = 𝐝� 𝐮R 	 …	 𝐝� 𝐮f  (53) 

The combined distributed/concentrated parameters approach to KLE presented in 

Diez et al. (2016b), which aims at including physical quantities in the dimensionality 

reduction, is here extended to combined distributed/concentrated geometrical parameters. 

In Diez et al. (2016b), the shape modification is the geometrical distributed quantity while 

physical quantities include distributed, such as the hull pressure in ship hydrodynamics 

applications, and concentrated parameters, such as ship total resistance. The goal of 

steering the dimensionality reduction towards physically meaningful design variables is 

pursued by objective function evaluations using low fidelity simulations. To keep the 
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method exclusively off-line, the distributed shape modification is here combined with 

concentrated geometrical parameters which are known to the designer to be physically 

meaningful. In the hydrofoil example, this means integrating classic approach to wing-type 

structure modifications with continuous shape parametrization. 

The linear representation of the shape modification uses the optimal basis of 

orthonormal functions 𝝍E(𝐱) as per 

 𝜸 𝐱, 𝐮 = 𝛼E(𝐮)𝝍E(𝐱)
Ä

E�R

 (54) 

where	

 𝜸 𝐱, 𝐮 = 𝜹 𝐱, 𝐮 , 𝐱 ∈ 𝐷	
𝜽 𝐱, 𝐮 , 𝐱 ∈ 𝐶

 (55) 

and 

 𝝍E(𝐱) =
𝝋E(𝐱), 𝐱 ∈ 𝐷	
𝝊E(𝐱), 𝐱 ∈ 𝐶

 (56) 

with 𝐷 and 𝐶 being the domains of the distributed and concentrated modifications 𝜹 and 

𝜽, respectively. For instance, in the hydrofoil application, 𝜹 is the distributed shape 

modification vector (displacement) and 𝜽 includes twist and camber at specified sections 

along the span. 
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CHAPTER 3:  TEST CASES 

Analytical test problems 

Two analytical test problems are used to evaluate the architecture. A solution by 

global derivative-free MDF provides a benchmark for the assessment of the performance 

of MCAS-MDO.  

The first multidisciplinary test is a two-dimensional unconstrained problem 

involving two disciplines: 

 min
𝐮
		𝑓 𝐮 = 𝑢R8 + 𝑢8 + 𝑦R + 𝑒`Yi (57) 

 with      		𝑦R 𝐮, 𝑦8 = 100 + 𝑢R + 𝑢8 − 0.2𝑦8  

  		𝑦8 𝐮, 𝑦R = |𝑦R| + 10 + 𝑢8  

Box-constraints are −10 ≤ 𝑢R ≤ 25 and	−25 ≤ 𝑢8 ≤ 10. A stochastic extension of this 

problem is used, for instance, in Leotardi et al. (2016). 

The second test is the three-dimensional constrained version of the first problem. 

Two disciplines and two constraints are used: 

 min	
𝐮

		𝑓 𝐮 = 𝑢R8 + 𝑢8 + 𝑦R + 𝑒`Yi (58) 

 with      		𝑦R 𝐮, 𝑦8 = 𝑢R + 𝑢8 + 𝑢æ8 − 0.2𝑦8  

  		𝑦8 𝐮, 𝑦R = |𝑦R| + 𝑢8 + 𝑢æ  

 Subject to 		1 −
𝑦R
3.16 ≤ 0  

  		
𝑦8
24 − 1 ≤ 0  

Box-constraints are 0 ≤ 𝑢R ≤ 10, 0 ≤ 𝑢8 ≤ 10, and −10 ≤ 𝑢æ ≤ 10. The solution of this 

problem is given in Tedford and Martins (2010) that also provide a comparison of several 

gradient-based architectures.	
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NACA 0009 three-dimensional hydrofoil 

Experimental data 

An experimental study has been carried out at the University of Tasmania—AMC 

to investigate the hydro-elastic behavior of a series of three-dimensional hydrofoils with 

nominally identical geometry but manufactured using different materials (Zarruk et al. 

2014). The hydrofoil has un-swept trapezoidal plan-form and is tapered with streamlined 

section as per NACA 0009 section. The models have been manufactured using Stainless 

Steel (SS), Aluminum (AL), and Carbon Fiber Reinforced Plastic (CFRP). Two types of 

CFRP models have been used; they have common layups but differ in fiber orientation. 

The tests have been conducted inside a pressurized water tunnel for several Reynolds 

numbers (Re) and angles of attack (a) including pre- and post-stall conditions. The models 

are constrained at the root section and free at the opposite end (tip section). Measured 

outputs include forces and deformation. The experimental FSI analysis, integrating 

experimental fluid and structural dynamics (EFD and ESD), focuses on steady conditions 

(pre-stall a) and assesses the Reynolds number dependency of the hydrofoil forces and 

deformation. 

The geometrical parameters of the hydrofoil are given in Table 1. 

Table 1: Hydrofoil geometry details 

Parameter Symbol Unit Value 

Span s m 0.3 

Chord at root cr m 0.12 

Chord at tip ct m 0.06 

Mean chord c m 0.09 

Thickness to mean chord ratio t - 0.09 

Aspect ratio AR - 3.33 
 

To accommodate the composite material structure, the NACA 0009 section, 

expressed by Eq. 59, is modified by thickening of the trailing edge as per Eq. 60. 
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𝑦é�ê�ëêìë = 5𝑡 0.2969𝑥7.î − 0.126𝑥−0.3516𝑥8 + 0.2843𝑥æ

− 0.1015𝑥ð  
(59) 

 
𝑦®ñë�ò�óë = 5𝑡 0.2969𝑥7.î − 0.126𝑥−0.3516𝑥8 + 0.2843𝑥æ

− 0.0889𝑥ð  
(60) 

The hydrofoils with standard NACA 0009 section are referred to as type I while the 

hydrofoils with modified section are regarded as type II. The difference between type I and 

II is displayed in Figure 11 highlighting the trailing edge thicknesses 𝜏ôo which are 

approximately 0.3% and 1.3% of the chord. 

 
Figure 11: Standard and modified NACA 0009 sections (Zarruk et al. 2014) 

The material properties of the hydrofoils are summarized in Table 2. K is the 

bending stiffness, E is the elastic modulus, I is the base section second moment of area, J 

is the torsional constants, rH is the material density, fn is the natural frequency, and rH/r is 

the ratio of hydrofoil material to water densities. For composite hydrofoil, whose structure 

is not isotropic, properties are given as average. Detailed material properties of the 

composite materials hydrofoils are given Table 3. They are also depicted in Figure 12 

showing the layout of the different materials and the orientation of the fibers. Specifically, 

the CFRP00 has fibers aligned with the local x (𝜁 = 0°) while CFRP30 has 𝜁 = 30° towards 

the leading edge.  
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Table 2: Material properties (Zarruk et al. 2014) 

Parameter Unit SS AL CFRP00 CFRP30 

Type - I II I II II II 

K N/mm 61.7 60.2 23.0 22.1 20.0 8.2 

E GPa 193 193 71 71 65 26 

I mm4 5956 6148 5956 6350 6148 6148 

J mm4 x103 860.4 854.5 860.4 854.7 854.5 854.5 

rH kg/m3 7900 7900 2700 2700 1600 1600 

fn in air Hz 100 96 100 96 112 72 

fn in water Hz 62 61 42 41 41 26 

rH/r - 7.9 7.9 2.7 2.7 1.6 1.6 
 

Table 3: composite material properties and layout (Zarruk et al. 2014) 

Layer Material Type Weight 
[g/m3] 

Thickness 
[mm] 

Carbon 12k T-700 Unidirectional (0°) 300 0.25 

Glass E-glass Bi-axial (0°/90°) 600 0.6 

Glass E-glass Basket (0°/90°) 130 0.15 

Glass E-glass/polyolefin 
Continuous filament 

skins/polyolefin scaffold 
core 

780 »2.0 

 
Figure 12: Composite material layout (Zarruk et al. 2014) 

The experiments are performed in a variable pressure water tunnel at the Cavitation 

Research Laboratory at the University of Tasmania. The tunnel test section is 0.6 m2 and 

2.6 m long; the velocity is spatially uniform within a 0.5% uncertainty, and the temporal 

variations are less than 0.2%. The tunnel was pressurized up to 200 kPa to prevent 
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cavitation. The models are mounted on a six-component force balance extending vertically 

into the flow (Figure 13 and Figure 14). Measurements of forces and moments are 

performed at several mean chord-based Re in the range 0.2x106/1.0x106 and several a 

values in the range -15/+15 degrees. The balance measures forces with less than 0.5% 

precision; the unsteady component is sampled at 1kHz. Deformations are measured using 

an image registration algorithm providing 3.6% average uncertainty. Experimental outputs 

are lift and drag forces, pitching moment, tip section displacement, and tip section twist. 

 
Figure 13: Type I hydrofoil mount (Zarruk et al. 2014) 

 

 
Figure 14: Type II hydrofoil mount (Zarruk et al. 2014) 

Forces and moments are analyzed in non-dimensional form. The lift coefficient 𝐶Ó, 

the drag coefficient 𝐶n, and the pitching moment coefficient 𝐶� are defined as 
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 𝐶Ó =
2𝐿

𝜌𝑈Ä8 𝑠𝑐
											𝐶n =

2𝐷
𝜌𝑈Ä8 𝑠𝑐

											𝐶� =
2𝑀

𝜌𝑈Ä8 𝑠𝑐8
 (61) 

Figure 15 to Figure 17 show 𝐶Ó, 𝐶n, and 𝐶� versus a. Forces and moment curves 

compare closely for all Re and a values. Stall occurs at approximately 10.5°. The trend 

indicates that tip deflection has little effect for metal and CFRP00 hydrofoils whereas it 

has a more significant effect for the CFRP30 whose deformation leads to a delay in the 

stall. 

 
Figure 15: EFD lift, drag, and pitching moment coefficients for metal type I hydrofoils (Zarruk et 

al. 2014) 
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Figure 16: EFD lift, drag, and pitching moment coefficients for metal type II hydrofoils (Zarruk 

et al. 2014) 

 
Figure 17: EFD lift, drag, and pitching moment coefficients for composite type II hydrofoils 

(Zarruk et al. 2014) 
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Figure 18 to Figure 21 show the spectra of the normal force fluctuations for type II 

hydrofoils. At post-stall incidence, peaks appear in the spectrum due to the excitation of 

the hydrofoil first mode with the onset of unsteady flow with stall.  

 
Figure 18: EFD power spectral densities of unsteady normal forces for the SS type II hydrofoil 

(Zarruk et al. 2014) 

 
Figure 19: EFD power spectral densities of unsteady normal forces for the AL type II hydrofoil 

(Zarruk et al. 2014) 



www.manaraa.com

44  
	

 
Figure 20: EFD power spectral densities of unsteady normal forces for the CFRP00 type II 

hydrofoil (Zarruk et al. 2014) 

 
Figure 21: EFD power spectral densities of unsteady normal forces for the CFRP30 type II 

hydrofoil (Zarruk et al. 2014) 

Figure 22 to Figure 25 show the non-dimensional displacement of the hydrofoil tip. 

For metal hydrofoils, the displacement is reported of the tip mid-point. For the composite 

material hydrofoils, the displacement is reported of leading and trailing edges of the tip 

since a significant twist of the section is found. Displacements are given in non-

dimensional form according to 

 𝛿ö = 𝛿
𝐸𝐼
𝐹e𝑠æ

 (62) 

where FN is the normal force, i.e. the component of the hydrodynamic force that is 

orthogonal to the hydrofoil chord.  
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Figure 22: ESD tip displacement for SS (open 
symbols) and AL (close symbols) type I 

hydrofoils (Zarruk et al. 2014) 

 

Figure 23: ESD tip displacement for SS (open 
symbols) and AL (close symbols) type II 

hydrofoils (Zarruk et al. 2014) 

 

 

Figure 24: ESD tip displacement at leading  
(open symbols) and trailing edges (close 

symbols) for the type II CFRP00 hydrofoil 
(Zarruk et al. 2014) 

 

Figure 25: ESD tip displacement at leading  
(open symbols) and trailing edges (close 

symbols) for the type II CFRP30 hydrofoil 
(Zarruk et al. 2014) 

Figure 26 show the composite hydrofoil tip twist. The CFRP00 hydrofoil shows positive 

twist whereas the CFRP30 model shows a negative twist. The latter has the effect of 
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reducing the effective angle of attack and therefore the acting normal force, which 

correlates well with the corresponding delay in stall. 

 
Figure 26: ESD tip twist for CFRP00 (open symbols) and CFRP30 (close symbols) hydrofoils 

(Zarruk et al. 2014) 

Multidisciplinary design optimization formulation 

The design optimization of the fully submerged NACA 0009 three-dimensional 

hydrofoil is aimed at minimizing the drag. The design conditions are defined by α = 8 

degrees and Re = 0.6x106 and belong to pre-stall range. Two hydrofoils with equivalent 

shape but made of different material, namely AL and CFRP, are optimized.  

The hydrofoil is subject to several constraints, including geometrical, structural, 

and hydrodynamic.  

1. Geometrical constraints: 

§ The span is assumed fixed. This constraint is automatically satisfied when 

enforced directly by the geometry modification tool.  

§ The hydrofoil thickness needs to allow the allocation of the composite material. 

Therefore, a minimum thickness requirement is enforced over the plan-form 

equal to the minimum thickness of the original geometry. 



www.manaraa.com

47  
	

2. Structural constraints: 

§ Structural integrity is required and ensured by limiting a stress-based material 

failure index. For the metal, the failure index is defined as ratio between the Von 

Mises stress 

 𝜎ø =
1
2 𝜎R − 𝜎8 8 + 𝜎8 − 𝜎æ 8 + 𝜎æ − 𝜎R 8  (63) 

where 𝜎W are the principal stresses, and the aluminum failure strength 𝜎/ as 

 𝜙 =
𝜎ø
𝜎/

 (64) 

For the composite material, the Tsai-Wu criteria (see the ANSYS Mechanical 

APDL Theory Reference for implementation details) is used. In the form of the 

inverse of the strength ratio, it is given by 

 
𝜙 =

1

− 𝐵
2𝐴 +

𝐵
2𝐴

8
+ 1
𝐴

 
(65) 

 

𝐴 = −
𝜎RR8
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−
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+
𝐶R8𝜎RR𝜎88

𝜎RA
/ 𝜎R�

/ 𝜎8A
/ 𝜎8�

/
+

𝐶8æ𝜎88𝜎ææ

𝜎8A
/ 𝜎8�

/ 𝜎æA
/ 𝜎æ�

/
+

𝐶Ræ𝜎RR𝜎ææ

𝜎RA
/ 𝜎R�

/ 𝜎æA
/ 𝜎æ�

/
 

(66) 

 𝐵 =
1
𝜎RA
/ +

1
𝜎R�
/ 𝜎RR +

1
𝜎8A
/ +

1
𝜎8�
/ 𝜎88 +

1
𝜎æA
/ +

1
𝜎æ�
/ 𝜎ææ (67) 

𝜎üA
/  and 𝜎ü�

/  are the failure stress values in the layer X-direction for tension and 

compression, respectively. 𝐶R8, 𝐶8æ, and 𝐶Ræ are equal to 𝑥 − 𝑦, 𝑦 − 𝑧, and 𝑥 −

𝑧, respectively. Failure is indicated by 𝜙 > 1. 
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3. Hydrodynamic constraints: 

§ The hydrofoil must deliver a minimum amount of lift. 

4. Numerical constraints: 

§ Bound-constraints for the design variables are directly handled by the 

optimization algorithm and do not require explicit treatment. 

From a hydrodynamic viewpoint, lift and drag depend on the shape of the hydrofoil 

and on the flow conditions. Since the structure is flexible and its dynamics couples with 

the hydrodynamics, the forces depend also on the deformation. The structural deformation 

depends on the material properties and on the hydrodynamic load. The hydrofoil shape 

parameters are the independent variables, also referred to as design variables 𝐮; load and 

deformations are the coupling variables 𝐲. The objective function is 𝐶n 𝐮 . 

The set of design variables includes the parameters defining the shape of the 

hydrofoil 𝐮4þ2�. and the variables identifying the composite material layup. In the present, 

the overall structure of the sandwich material made of CFRP and foam core is assumed 

similar to the experiments of Zarruk et al. (2014). The material layout is modified only by 

the fiber orientation 𝑢/W3.� = 𝜁 of the carbon fiber reinforced layers. The global set of 

design variables is therefore 𝐮0 = 𝐮4þ2�.0  for the AL hydrofoil and 𝐮0 = 𝐮4þ2�.0 , 𝑢/W3.�  

for the CFRP hydrofoil. 

The optimization problem is formulated according to Eq. 20 to 23 as 

 min
𝐮∈À

			𝐶n 𝐮  (68) 

 subject to  1 −
𝐶Ó 𝐮
𝐶Ó∗

≤ 0 (69) 

  1 −
𝜏 𝐮
𝜏ôo∗

≤ 0 (70) 

  
𝜙(𝐮)
𝜙∗ − 1 ≤ 0 (71) 

where 𝐶Ó∗ =0.645, based on the 𝐶Ó of the rigid original geometry, 𝜏ôo∗ = 0.000783, based 

of the minimum thickness of the original geometry (at the trailing edge), and 𝜙∗ = 0.65, 

which is the maximum value among SS, AL, CFRP00, and CFRP30 simulations of the 
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original geometry. In the following chapters 𝐶n will be referred to as the objective function 

𝑓; Eq. 69 to 71 will be referred to as constraints 𝑐R ≤ 0, 𝑐8 ≤ 0, and 𝑐æ ≤ 0. 
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CHAPTER 4:  COMPUTATIONAL SETUP 

Hydrodynamics via Reynolds averaged Navier-Stokes simulation 

CFD simulations are performed at Re equal to 0.2, 0.6, and 1.0x106 and a equal to 

0, 2, 4, 6, 8, 10, 12, and 14. Table 4 summarizes the conditions. Both type I and type II 

hydrofoil geometries are studied. The analysis is aimed at the identification of lift and drag 

force coefficients and pitching moment coefficient. 

Table 4: CFD test cases 

Parameter Symbol/definition Case 1 Case 2 Case 3 

Reynolds number Re 0.2x106 0.6x106 1.0x106 

Froude number Fr 2.7 8.2 13.7 

Speed [m/s] U∞ 2.57 7.70 12.8 

Angle of attack [deg] a 0,2,4,6,8,10,12,14 

Flow time [s] T = c/U∞ 0.035 0.012 0.007 

Time step [s] Dt T/180 
 

The grid used for the CFD simulation is made of 11 million nodes, which are 

clustered around the body to catch the boundary layer, as shown in Figure 27 including the 

resolution of the sharp corners of the trailing edge. The maximum y+ value is 0.84 occurring 

for Re equal to 1.0x106. The hydrofoil lays span-wise along z, while x and y are cross-

section coordinates. The hydrodynamic force acting on the body has drag and lift aligned 

with the x and y axis, respectively. The x axis is aligned with the incoming flow, and a is 

defined positive when produces a positive lift (positive y direction). The hydrofoil grid 

includes 100 points along the span (z) and 353 points along the chord (x), as shown in 

Figure 28. The difference in the trailing edge thickness between type I and type II hydrofoil 

grids is displayed in Figure 29. Topology and grid size for the two types are analogous. 
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Figure 27: CFD mesh 

 
Figure 28: CFD wall mesh 
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Figure 29: CFD mesh detail of the trailing edge for type I and II hydrofoils 

The independence of the results from the mesh size is assessed by grid verification. 

G1, G2, and G3 refer to fine, medium, and coarse meshes having refinement ratio equal to 

2 and, respectively, 11M, 3.3M, and 1.5M of nodes. 

Structural dynamics via finite element analysis 

CSD simulations for the modal analysis are performed for all hydrofoil models; it 

is aimed at the identification of the first five natural frequencies and mode shapes. The 

study is carried out using the FE analysis of ANSYS. 

The hydrofoils are modeled by two-dimensional shell elements SHELL281 

centered on the hydrofoil mid-plane in a structured-type arrangement. These elements have 

eight nodes, six degrees of freedom at each node, namely three translations and three 

rotations, and are suitable for analyzing thin to moderate thick shell structures. Figure 30 

shows the hydrofoil structural grid, while Figure 31 provides a detailed view of the 

element. The SHELL281 elements are layered in order to model the composite sandwich; 

a variable total thickness is included and single layer thicknesses are scaled accordingly. 

Metal hydrofoil models, SS and AL, are built using both type I and type II geometries; 
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CFRP models are only type II. For the metal hydrofoil models, the section where the 

clamped boundary condition is applied extends 20 mm beyond the root section (Garg et al. 

2017) to represent the fairing disk used in the experimental mount. 

 

 
Figure 30: CSD mesh 

 
Figure 31: SHELL281 element (ANSYS 
Mechanical APDL Theory Reference) 

In order to evaluate the wet modes of the hydrofoil, the mesh is embedded in a fluid 

domain modeled by acoustic elements as shown in Figure 32. Three-dimensional FLUID30 

elements (Figure 33) fill the acoustic domain whose boundary is delimited by two-

dimensional FLUID130 elements (Figure 34). 

 
Figure 32: CSD acoustic domain mesh 
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Figure 33: FLUID30 element (ANSYS Mechanical 

APDL Theory Reference) 

 
Figure 34: FLUID130 element (ANSYS 
Mechanical APDL Theory Reference) 

Grid verification of hydrofoil model and acoustic domain is performed. The natural 

frequencies predicted by three levels of body grid refinement and three acoustic domain 

radii are compared. Maximum element size and radius of acoustic domain are used to 

define the grid and employ a refinement ratio equal to 2. G1, G2, and G3 refer to fine, 

medium, and coarse meshes having, respectively, 0.005 m, 0.071 m, and 0.010 of 

maximum element size. The associated number of elements is 1.5k, 0.7k, and 0.4k. D1, 

D2, and D3 refer to large, medium, and small acoustic domain, respectively, which have 

radius equal to 0.7, 0.5, and 0.35 m. 

Fluid-structure interaction 

The FSI is aimed at the identification of the hydrofoil deformation, specifically, tip 

displacement and twist. Steady one-way coupling FSI is performed for all hydrofoil models 

and four a values in the pre-stall range and all Re numbers. Steady two-way coupling FSI 

is performed for all type II hydrofoil at 8 degrees a and Re equal to 0.6x106 (Table 5). 
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Table 5: FSI test cases 

Test case a Re Condition Coupling 

1 2,4,6,8 0.2x106, 0.6x106, 1.0x106 Steady One-way 

2 8 0.6x106 Steady Two-way 
 

Shape modification via free-form deformation 

The directions 𝐬, 𝐭, and 𝐮 lay on the chord-wise, thickness-wise, and span-wise 

directions, respectively. Displacements are allowed in the 𝐬 and 𝐭  directions only, giving 

2 degrees of freedom to each control point and keeping the span fixed. Five design spaces 

are analyzed and compared having different number of control points and degrees of 

freedom. 

Design space 1 to 4, present, in addition to the displacements in the 𝐬 and 𝐭 

directions, a rotation imposed at the tip section of the hydrofoil and linearly interpolated 

along the span to reach a zero value at the root section. Design space 5 features rigid 

displacements and rotations at all the cross-sections, whose number and position is defined 

by the distribution of control points in the 𝐮 direction. Displacements are allowed in the 

range ±20% of the mid chord; the range for rotations is ±5 degrees. 

Table 6 provides the number of control points 𝑁�" and the associated number of 

design variables 𝑀 for each design space. Control point locations are shown in Figure 35 

to Figure 38. 

Table 6: Design space definition based on FFD parameters 

Design space 𝑙 + 1 𝑚 + 1 𝑛 + 1 𝑁�" 𝑀 

1 2 2 2 8 17 

2 5 2 5 50 101 

3 10 2 10 200 401 

4 20 2 20 800 1601 

5 5 2 5 50 112 
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Figure 35: Design space 1 control points 

distribution 

 
Figure 36: Design space 2 and 5 control points 

distribution 

 
Figure 37: Design space 3 control points 

distribution 

 
Figure 38: Design space 4 control points 

distribution 

In the application of the KLE-based dimensionality reduction, the weight function 

is assumed constant and equal to one. The design spaces defined by FFD are sampled using 

a random distribution of 𝑆 = 100, 1000, and 10000 items. 

When performing combined distributed/concentrated parameter KLE, the 

distributed quantity is the displacement and the concentrated quantities are twist and 

camber. The twist is quantified on the modified shape using the positions of leading and 

trailing edges. The camber (curvature) is evaluated as second order finite difference using 

the positions of leading edge, mid-chord point, and trailing edge. When performing the 

KLE, a weight is assigned to distributed and concentrated modification variances in order 

to obtain global 𝜎8 = 1. The combined distributed/concentrated parameter KLE is applied 

to the design space with the largest geometrical variability and compares six sets of relative 

weights. 

Analytical test problems 

The non-adaptive sampling technique used to initialize the method is an 

Hammersley sequence of 4M size, i.e. 8 samples in the two-dimensional problem and 12 

samples in the three-dimensional problem. The same number of samples is identified at 
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each iteration; the ratio between infill (𝐼) and coupling (𝐶) points is variable and depends 

on the Pareto solutions obtained. The sampling parameters adopted by the MCAS are 

𝑈¬W� = 10`8% and ∆¬W�= 10`ð% of the function and design variable ranges, 

respectively. The DRBF surrogate model uses a power-law kernel with stochastic exponent 

1 < 𝜀 < 3. The multi-objective DPSO applied to the surrogate model employs 64 particles 

and 100 iterations and uses the coefficients 𝑐7 = 0.721, 𝑐R = 1.655, and 𝑐8 = 1.655. The 

MDO is considered converged when 𝑈� in the neighborhood of the optimum reaches the 

tolerance 𝑈�
(A$j) = 10`ð% of the function range or the difference in objective function 

value between consecutive iterations at the optimum is lower than 𝑈�
(A$j) for 15 iterations. 

Each infill point is initially evaluated by a two-iteration (loose) MDA corresponding to two 

function evaluations for each discipline. 

The global derivative-free implementation of the MDF uses directly DPSO with the 

MDA. Initial sampling, number of particles, and DPSO coefficients are the same used for 

the MCAS-MDO. At each iteration, the MDA is considered converged when 𝑈� reaches 

the tolerance 𝑈�
(A$j) = 10`ð%. The MDO is considered converged when the difference in 

objective function value between consecutive iterations at the optimum is lower than 𝑈�
(A$j) 

for 15 iterations. 

Sensitivity analysis and multidisciplinary design optimization 

The sensitivity analysis is performed exploring the response of the outputs of 

interest to the change in one design variable at the time around the original geometry and 

fiber orientation (in the case of the CFRP hydrofoil). Six MDA via FSI simulation are 

computed for each design variable. If 𝐮 = 0 corresponds to the original geometry and all 

the design variables have the lower bound at -1 and the upper bound at 1, the six sensitivity 

points have 𝑢W =	-1, -0.667, -0.333, 0.333, 0.667, and 1 and 𝑢U%W = 0. The FSI simulations 

are iterated till convergence, i.e. till the coupling uncertainty reaches the threshold value 

𝑈�
(A$j) = 1% of the original geometry output of interest. A maximum iteration number 

equal to 40 is also enforced corresponding to 80 total function evaluations. 

The MDO uses the available sensitivity points as initial DoE. At every iteration, 

MCAS aims at identifying 5 new samples that can be infill points, coupling points, or a 
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combination of the two. The sampling parameters adopted by the MCAS are 𝑈¬W� =

10`8% and ∆¬W�= 10`ð% of the approximated function and design variable ranges, 

respectively. Each infill point is initially evaluated by a single-iteration (loose) MDA 

corresponding to two function evaluations in total, one for the CFD and one for the FE 

analyses. Such loose MDA coincides with a one-way coupling approach. The DRBF 

surrogate model uses a power-law kernel with stochastic exponent 1 < 𝜀 < 3. The multi-

objective DPSO applied to the surrogate model employs 100 particles and 200 iterations 

and uses the coefficients 𝑐7 = 0.721, 𝑐R = 1.655, and 𝑐8 = 1.655. Given the large expense 

of the objective function evaluations, a simulation budget is imposed in place of 

convergence criteria to determine the completion of the MDO. After the sensitivity 

analysis, additional 200 function evaluations driven by the MDO are allowed, 

corresponding to 100 CFD and 100 CSD simulations. 
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CHAPTER 5:  HYDRODYNAMIC AND STRUCTURAL ANALYSIS RESULTS 

Hydrodynamics 

Type I geometry 

𝐶Ó, 𝐶n, and CM from type I CFD simulation are shown in Figure 39 including EFD 

data from SS type I. The latter is the hydrofoil model most closely comparable to a rigid 

body. The figure includes results from RANS simulation and DES simulatio1n for α = 14 

degrees and Re = 0.6x106
. For pre-stall conditions, the agreement is very good for all Re. 

For post-stall conditions, CFD results at Re = 0.2x106 indicate a larger reduction in 𝐶Ó than 

shown by EFD data; the stall angle is under-estimate whereas it is accurately estimated for 

Re = 0.6x106. At Re = 1.0x106, EFD data is limited to a maximum α equal to 6 degrees. 

Errors between CFD and EFD for forces and moment coefficients are reported in 

Table 7 as percentage of the dynamic range. The average error for pre-stall conditions is 

1.11% whereas for post-stall is 12.1%. The DES simulation improves the prediction of 𝐶n 

while worsening the prediction of 𝐶Ó and 𝐶�. The hydrodynamic efficiency 𝐸𝑓𝑓 = 𝐶Ó/𝐶n 

is reported in Table 8 for all Re and a values. The maximum value given by EFD is reached 

at a = 4 degrees for all Re numbers. The maximum value is predicted by CFD at a equal 

to 6 degrees. 
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Figure 39: CFD lift, drag, and pitching moment coefficients (type I) 
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Table 7: CFD lift, drag, and pitching moment coefficient errors with respect to EFD (type I) 

a 
𝐶Ó E%range

* 𝐶n E%range
** 𝐶� E%range

*** 

Re = 
0.2x106 

Re = 
0.6x106 

Re = 
1.0x106 

Re = 
0.2x106 

Re = 
0.6x106 

Re = 
1.0x106 

Re = 
0.2x106 

Re = 
0.6x106 

Re = 
1.0x106 

0 0.49 0.04 0.08 0.61 0.58 1.39 -0.09 -0.04 0.20 

2 -5.38 0.44 0.77 0.06 1.11 2.04 -0.30 -0.99 -0.36 

4 -3.45 -2.75 -0.77 -0.35 2.27 2.08 -0.83 -1.62 -0.16 

6 -0.95 -1.72 -2.72 -0.87 0.79 1.20 -0.16 0.98 0.24 

8 1.09 -0.34 - -1.23 1.33 - 2.73 -0.57 - 

10 -19.22 1.29 - 5.49 0.72 - -26.70 0.85 - 

12 -26.01 -0.83 - -20.42 -7.73 - -11.88 7.34 - 

14RANS -21.51 -11.07 - -24.78 -10.23 - -4.41 -4.29 - 

14DES - -12.01 - - -5.60 - - -13.92 - 
*𝐶Ó dynamic range = 0.80 

**𝐶n dynamic range = 0.19 
***𝐶� dynamic range = 0.22 

 

Table 8: CFD hydrodynamic efficiency including errors with respect to EFD (type I) 

a 
Re = 0.2x106 Re = 0.6x106 Re = 1.0x106 

CFD EFD E%D CFD EFD E%D CFD EFD E%D 

2 10.86 13.96 -22.24 12.43 14.52 -14.43 13.39 18.95 -29.32 

4 17.01 17.87 -4.84 19.08 27.43 -30.44 20.25 27.40 -26.12 

6 18.56 17.72 4.76 20.55 22.59 -9.04 21.54 25.05 -14.03 

8 16.54 15.34 7.84 19.48 21.20 -8.13 - - - 

10 6.70 9.73 -31.20 17.52 17.83 -1.74 - - - 

12 4.16 4.47 -6.94 5.73 5.22 9.91 - - - 

14RANS 3.29 3.39 -2.95 3.76 
3.85 

-2.20 - - - 

14DES - - - 3.55 -7.81 - - - 
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The steady behavior of the flow predicted by the CFD for pre-stall conditions is 

shown in Figure 40 and Figure 41 at Re equal to 0.6x106 and a equal to 8 degrees. 

Specifically, the first figure depicts a rake of streamlines starting upstream of the body at 

y = 0 and colored by non-dimensional x-velocity 𝑢∗ = &
À'

. The streamlines indicate that 

the flow stays attached to the body and a vortex is generated at the tip of the hydrofoil, 

responsible for the generation of lift at non-zero a. The second figure shows the u* contours 

over a y-section at 50% of the span. The flow accelerates on the upper part of the body, 

while it decelerates on the lower forming the wake at the trailing edge with no separation. 

 
Figure 40: CFD streamlines for Re = 0.6x106 

and a = 8 (type I) 

 
Figure 41: CFD x-velocity contour for Re = 

0.6x106 and a = 8 at 50% of the span (type I) 

At post-stall conditions, the flow is unsteady. Streamlines and velocity contour are 

shown in Figure 42 and Figure 43. The flow separates close to the leading edge becoming 

strongly turbulent Figure 44 and Figure 45 show the iso-surfaces and contour of Q, the 

second invariant of the rate of strain tensor. 

Since the flow shows strong turbulence in post-stall, DES simulation is additionally 

performed for Re equal to 0.6x106 and a equal to 14 degrees to capture a higher frequency 

content than the RANS simulation. Streamlines and velocity contour are shown in Figure 

46 and Figure 47. The Q criterion is shown in Figure 48 and Figure 49. Overall, the DES 

simulation allows for a higher resolution of the post-stall turbulence. This effect is shown 

by the spectral density, displayed in Figure 50, and time histories of the signals, shown in 
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Figure 51 to Figure 53 for RANS and DES, respectively. The DES simulation can capture 

the vortex shedding frequency, which is about 50 Hz and correlates well with the 

frequencies emerging from the spectral analysis of the experimental data (Zarruk et al. 

2014). 

 
Figure 42: CFD streamlines for Re = 0.6x106 

and a = 14 (type I, RANS) 

 
Figure 43: CFD x-velocity contour for Re = 

0.6x106 and a = 14 at 50% of the span (type I, 
RANS) 

 
Figure 44: CFD iso-surface at Q = 150 for Re 

= 0.6x106 and a = 14 (type I, RANS) 

 
Figure 45: CFD Q contour for Re = 0.6x106 and a 

= 14 at 50% of the span (type I, RANS) 
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Figure 46: CFD streamlines for Re = 0.6x106 

and a = 14 (type I, DES) 

 
Figure 47: CFD x-velocity contour for Re = 

0.6x106 and a = 14 at 50% of the span (type I, 
DES) 

 
Figure 48: CFD iso-surface at Q = 150 for Re 

= 0.6x106 and a = 14 (type I, DES) 

 
Figure 49: CFD Q contour for Re = 0.6x106 and a 

= 14 at 50% of the span (type I, DES) 
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Figure 50: CFD FFT of normal force 

 

 
Figure 51: CFD time history of the lift coefficient using RANS (top) and DES (bottom) 
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Figure 52: CFD time history of the drag coefficient using RANS (top) and DES (bottom) 

 
Figure 53: CFD time history of the pitching moment coefficient using RANS (top) and DES 

(bottom) 
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Type II geometry 

𝐶Ó, 𝐶n, and 𝐶� from type II CFD simulation are shown in Figure 54  including EFD 

data from SS type II. RANS simulation is used for a up to 8 degrees, while DES simulation 

is used for larger angles. For pre-stall conditions, the agreement is very good for all Re. 

For post-stall conditions, CFD results at Re = 0.2 and 0.6x106 indicate a larger reduction 

in 𝐶Ó than shown by EFD data. For Re = 0.2x106 the stall angle is under-estimate while it 

is over-estimated for Re = 0.6x106. Errors between CFD and EFD for forces and moment 

coefficients are reported in Table 9 as percentage of the dynamic range. The average error 

for pre-stall conditions is 1.08% and is 15.6% for post-stall. 

The hydrodynamic efficiency is summarized in Table 10 for all Re and a values. 

The maximum value given by the EFD and CFD is reached at a equal to 6 degrees for all 

Re numbers.  
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Figure 54: CFD lift, drag, and pitching moment coefficients (type II) 
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Table 9: CFD lift, drag, and pitching moment coefficient errors with respect to EFD (type II) 

a 
𝐶Ó E%range

* 𝐶n E%range
** 𝐶� E%range

*** 

Re = 
0.2x106 

Re = 
0.6x106 

Re = 
1.0x106 

Re = 
0.2x106 

Re = 
0.6x106 

Re = 
1.0x106 

Re = 
0.2x106 

Re = 
0.6x106 

Re = 
1.0x106 

0 0.24 -1.30 -2.87 -0.22 -0.39 5.57 0.00 -1.00 -0.99 

2 -1.52 -0.06 0.01 0.61 0.20 1.83 -0.41 -2.84 -1.29 

4 -0.15 -0.59 -1.47 0.11 0.52 1.13 -0.88 -1.70 -1.63 

6 0.71 -1.01 -2.06 -0.55 0.03 1.15 0.41 -1.27 -0.64 

8 1.73 -0.66 - -0.82 0.84 - 1.62 0.06 - 

10 -18.29 0.29 - -20.85 0.53 - -4.52 0.86 - 

12 -33.49 22.09 - -24.57 -50.73 - -17.77 52.42 - 

14 -2.71 -7.30 - -4.56 -7.84 - -4.48 -7.45 - 
*𝐶Ó dynamic range = 0.80 

**𝐶n dynamic range = 0.19 
***𝐶� dynamic range = 0.22 

 

Table 10: CFD hydrodynamic efficiency including errors with respect to EFD (type II) 

a 
Re = 0.2x106 Re = 0.6x106 Re = 1.0x106 

CFD EFD E%D CFD EFD E%D CFD EFD E%D 

2 9.90 11.47 -13.67 10.96 11.28 -2.88 11.73 15.70 -25.30 

4 15.83 16.05 -1.37 17.35 18.59 -6.69 18.25 21.53 -15.22 

6 17.71 16.84 5.16 19.35 19.71 -1.83 20.16 22.93 -12.07 

8 16.90 15.86 6.53 18.97 20.08 -5.52 - - - 

10 12.37 8.34 48.21 17.09 17.42 -1.91 - - - 

12 3.82 4.31 -11.35 15.21 4.82 215.24 - - - 

14 3.35 3.31 1.26 3.50 3.52 -0.57 - - - 
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Solution verification 

The numerical uncertainty 𝑈fe of the steady simulations depend on the grid 

uncertainty 𝑈¹	and on the iterative uncertainty 𝑈W. 𝑈fe is defined as 

 𝑈fe = 𝑈¹8 + 𝑈W8 (72) 

The grid convergence study, aimed at finding 𝑈¹, is carried out following 

Mousaviraad et al. (2013). Three solutions, S1, S2, and S3, characterized by systematic 

refinement ratio 

 𝑟 =
∆𝑥R
∆𝑥8

=
∆𝑥8
∆𝑥æ

= 2 (73) 

are assessed provided by the coarse, medium, and fine grids (G3, G2, and G1), respectively. 

The changes in solution are 

 
𝜀8R = S2	 − 	S1 

𝜀æ8 = S3	 − 	S2 
(74) 

and the convergence ratio R is defined by 

 𝑅 =
𝜀8R
𝜀æ8

 (75) 

The convergence is evaluated according to the following criteria: 

 

Monotonic convergence if 0 < 𝑅 < 1 

Oscillatory convergence if −1 < 𝑅 < 0 

Monotonic divergence if 𝑅 > 1 

Oscillatory divergence if 𝑅 < −1 

(76) 

The change in 𝐶Ó, 𝐶n, and 𝐶� versus mesh size is given in Table 11 for the 

simulation of a type II geometry with a = 8 at Re = 0.6x106. 𝐶Ó and 𝐶n show monotonic 

convergence while 𝐶� shows monotonic divergence. 
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Table 11: CFD grid study 

Parameter G1 G2 G3 𝜀R8 𝜀8æ R Result 

𝐶Ó 0.6497 0.6527 0.6561 0.0030 0.0034 0.8819 monothonic convergence 

𝐶n 0.0343 0.0348 0.0353 0.0005 0.0005 0.9620 monothonic convergence 

𝐶� 0.1703 0.1705 0.1707 0.0003 0.0002 1.3079 monothonic divergence 
 

The Richardson extrapolation (RE) can be used for 𝐶Ó and 𝐶n to estimate the order 

of accuracy 𝑝co and the error estimate 𝛿co 

 
𝑝co =

ln 1
𝑅 	

ln 𝑟  

𝛿co =
𝜀æ8

𝑟�*+ − 1 

(77) 

The distance between the solution and the asymptotic range is measured by the ratio 

𝑃 = 𝑝co/𝑝 where 𝑝 is the theoretical order of accuracy and equal to 2 for the numerical 

scheme used in CFDShip-Iowa. For solution in the asymptotic range, 𝑃 should be equal to 

one. The factor of safety method (Xing and Stern 2010) can be applied for the assessment 

of the 𝑈¹ as per 

 𝑈¹ =
2.45 − 0.85𝑃 𝛿co ,						0 < 𝑃 ≤ 1
16.4𝑃 − 14.8 𝛿co ,															𝑃 > 1 (78) 

𝑈W is evaluated considering the range of variation of the output of interest at 

simulation convergence. Table 12 provides the uncertainty value. The numerical 

uncertainty associated to the steady 𝐶Ó and 𝐶n is 6.3% and 3.1%, respectively. 

Table 12: CFD verification 

Parameter G1 result 𝑝co 𝛿co P 𝑈¹% 𝑈W% 𝑈fe% 

𝐶Ó 0.6497 0.4370 0.0180 0.2185 6.2766 0.0551 6.2768 

𝐶n 0.0343 1.4992 0.0006 0.7496 3.0499 0.1493 3.0535 
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Structural dynamics 

The first five natural frequencies in vacuum, air, and water are given in Table 13, 

Table 14, and Table 15. The first natural frequency predicted with the FE analysis is 

validated against experimental data in Table 16. The largest error occurs for the AL type II 

hydrofoil while the smallest for the CFRP00 hydrofoil. The average among all models is 

8.2%. Figure 55, Figure 56, and Figure 57 show the mode shapes for the SS, AL, and 

composite material hydrofoils, respectively. 

Table 13: CSD natural frequencies in vacuum 

Mode 

fn [Hz] 

SS AL SS AL CFRP00 CFRP30 

Type I Type I Type II Type II  Type II Type II 

1 105.30 109.25 105.18 109.12 119.18 77.801 

2 441.31 457.85 440.31 456.82 385.59 315.16 

3 781.54 810.83 752.14 780.34 457.39 524.80 

4 1073.0 1113.2 1072.8 1113.0 834.32 732.91 

5 1077.5 1117.9 1111.8 1153.5 996.30 806.84 
 

Table 14: CSD natural frequencies in air 

Mode 

fn [Hz] 

SS AL SS AL CFRP00 CFRP30 

Type I Type I Type II Type II  Type II Type II 

1 105.27 109.60 105.18 108.97 116.62 76.610 

2 441.24 457.19 440.37 456.30 375.70 306.26 

3 781.75 810.24 753.28 780.85 432.70 504.18 

4 1073.0 1113.2 1073.3 1112.3 799.80 699.59 

5 1077.5 1116.6 1111.2 1152.9 917.93 810.79 
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Table 15: CSD natural frequencies in water 

Mode 

fn [Hz] 

SS AL SS AL CFRP00 CFRP30 

Type I Type I Type II Type II  Type II Type II 

1 70.626 51.030 71.352 51.804 29.214 19.077 

2 303.56 222.16 307.07 226.21 135.37 98.395 

3 584.02 451.29 580.91 455.45 156.09 202.68 

4 759.33 562.31 769.89 576.64 326.33 259.98 

5 1067.9 965.16 1106.2 977.57 361.46 436.79 
 

Table 16: CSD first natural frequencies in air including errors with respect to ESD 

Model 
fn [Hz] 

CSD ESD E%D 

SS – type I 105.27 100 5.27 

AL –type I 109.60 100 9.70 

SS – type II 105.18 96 9.79 

AL – type II 108.97 96 13.9 

CFRP00 116.62 112 4.13 

CFRP30 76.610 72 6.40 
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Figure 55: CSD SS hydrofoils mode shapes 
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Figure 56: CSD AL hydrofoils mode shapes 
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Figure 57: CSD CFRP hydrofoils mode shapes 
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Grid study 

Dry frequency change versus mesh size is given in Table 17 to Table 22 for SS and 

AL types I and II hydrofoils and CFRP00 and CFRP30 type II hydrofoils. The first five 

frequencies are evaluated and show monotonic convergence in all cases but the second 

frequency of the CFRP00 hydrofoil which shows oscillatory convergence. Table 23 gives, 

as example, the change in wet frequency in water versus acoustic domain size for one 

model, namely the CFRP00. The G2 body mesh is used for all domains sizes. Monotonic 

convergence is achieved for all frequencies but the CFRP00 second frequency in vacuum, 

which shows oscillatory convergence. 

Table 17: CSD grid study for dry natural frequencies of the SS type I hydrofoil (vacuum) 

Mode 
fn [Hz] 

𝜀R8 𝜀8æ R Result 
G1 G2 G3 

1 105.3 105.35 105.46 0.05 0.11 0.45 monothonic convergence 

2 441.31 441.53 442.11 0.22 0.58 0.38 monothonic convergence 

3 781.54 782.15 783.92 0.61 1.77 0.34 monothonic convergence 

4 1073 1073 1073.1 0.00 0.10 0.00 monothonic convergence 

5 1077.5 1078.1 1080 0.60 1.90 0.32 monothonic convergence 
 

Table 18: CSD grid study for dry natural frequencies of the SS type II hydrofoil (vacuum) 

Mode 
fn [Hz] 

𝜀R8 𝜀8æ R Result 
G1 G2 G3 

1 109.25 109.3 109.41 0.05 0.11 0.45 monothonic convergence 

2 457.85 458.08 458.69 0.23 0.61 0.38 monothonic convergence 

3 810.83 811.47 813.31 0.64 1.84 0.35 monothonic convergence 

4 1113.2 1113.2 1113.3 0.00 0.10 0.00 monothonic convergence 

5 1117.9 1118.5 1120.5 0.60 2.00 0.30 monothonic convergence 
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Table 19: CSD grid study for dry natural frequencies of the AL type I hydrofoil (vacuum) 

Mode 
fn [Hz] 

𝜀R8 𝜀8æ R Result 
G1 G2 G3 

1 105.18 105.25 105.4 0.07 0.15 0.47 monothonic convergence 

2 440.31 440.64 441.4 0.33 0.76 0.43 monothonic convergence 

3 752.14 753.58 756.53 1.44 2.95 0.49 monothonic convergence 

4 1072.8 1073.8 1076.3 1.00 2.50 0.40 monothonic convergence 

5 1111.8 1111.2 1110.3 -0.60 -0.90 0.67 monothonic convergence 
 

Table 20: CSD grid study for dry natural frequencies of the AL type II hydrofoil (vacuum) 

Mode 
fn [Hz] 

𝜀R8 𝜀8æ R Result 
G1 G2 G3 

1 109.12 109.2 109.36 0.08 0.16 0.50 monothonic convergence 

2 456.82 457.16 457.95 0.34 0.79 0.43 monothonic convergence 

3 780.34 781.83 784.89 1.49 3.06 0.49 monothonic convergence 

4 1113 1114 1116.7 1.00 2.70 0.37 monothonic convergence 

5 1153.5 1152.9 1151.9 -0.60 -1.00 0.60 monothonic convergence 
 

Table 21: CSD grid study for dry natural frequencies of the CFRP00 hydrofoil (vacuum) 

Mode 
fn [Hz] 

𝜀R8 𝜀8æ R Result 
G1 G2 G3 

1 119.18 119.04 118.75 -0.14 -0.29 0.48 monothonic convergence 

2 385.59 385.84 385.55 0.25 -0.29 -0.86 oscillatory convergence 

3 457.39 457.04 456.22 -0.35 -0.82 0.43 monothonic convergence 

4 834.32 834.31 833.88 -0.01 -0.43 0.02 monothonic convergence 

5 996.3 995.71 994.37 -0.59 -1.34 0.44 monothonic convergence 
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Table 22: CSD grid study for dry natural frequencies of the CFRP30 hydrofoil (vacuum) 

Mode 
fn [Hz] 

𝜀R8 𝜀8æ R Result 
G1 G2 G3 

1 77.801 77.771 77.52 -0.03 -0.25 0.12 monothonic convergence 

2 315.16 314.87 314.23 -0.29 -0.64 0.45 monothonic convergence 

3 524.8 525 525.22 0.20 0.22 0.91 monothonic convergence 

4 732.91 732.36 731.1 -0.55 -1.26 0.44 monothonic convergence 

5 806.84 804.93 801.71 -1.91 -3.22 0.59 monothonic convergence 
 

Table 23: CSD grid study for wet natural frequencies of the CFRP00 hydrofoil (water) 

Mode 
fn [Hz] 

𝜀R8 𝜀8æ R Result 
D1 D2 D3 

1 29.214 29.251 29.65 0.04 0.40 0.09 monothonic convergence 

2 135.37 135.72 137.43 0.35 1.71 0.20 monothonic convergence 

3 156.09 156.84 158.51 0.75 1.67 0.45 monothonic convergence 

4 326.33 327.2 329.99 0.87 2.79 0.31 monothonic convergence 

5 361.46 363.03 367.76 1.57 4.73 0.33 monothonic convergence 
 

Fluid-structure interaction 

One-way coupling 

This section presents the results for the FSI test case 1, for which a one-way 

coupling is used. Tip displacements at pre-stall conditions are depicted in Figure 58 and 

Figure 59 for metal and composite material, respectively. The maximum deflection occurs 

for each hydrofoil for the combination of largest a and largest Re. The SS hydrofoil shows 

the smallest deformation, with a maximum value equal to 2% of the span. The CFRP30 

hydrofoil shows the largest deformation, with a maximum value equal to 16% of the span. 

EFD/ESM displacements are given for leading edge, mid-chord point, and trailing edge, 

allowing for evaluating both translation and twist of the tip section. Metal hydrofoils do 

not show relevant tip twist, whereas composite material hydrofoils present on average a 
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positive and a negative twist angle for CFRP00 and CFRP30, respectively, which are 

shown in Figure 60. 

 
Figure 58: One-way FSI metal hydrofoil tip displacement 

 
Figure 59: One-way FSI CFRP hydrofoil tip displacement 
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Figure 60: One-way FSI CFRP hydrofoil tip twist 
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Table 24: One-way FSI validation of tip displacement 

M
od

el
 

a 

d  [mm] 
Re = 0.2x106 

d  [mm] 
Re = 0.6x106 

d  [mm] 
Re = 1.0x106 

CFD/ 
CSD 

EFD/ 
ESD 

E%d* 
CFD/ 
CSD 

EFD/ 
ESD 

E%d** 
CFD/ 
CSD 

EFD/ 
ESD 

E%d*** 

SS
 ty

pe
 I 

2 0.04 0.08 -2.15 0.41 0.60 -1.29 1.14 1.59 -1.82 

4 0.09 0.14 -2.83 0.83 1.28 -3.08 2.31 3.35 -4.23 

6 0.14 0.19 -2.97 1.26 1.84 -3.95 3.52 5.11 -6.48 

8 0.18 0.25 -3.92 1.66 2.39 -5.03 4.73 - - 

A
L 

ty
pe

 I 

2 0.12 0.21 -4.90 1.11 1.38 -1.85 3.10 3.78 -2.80 

4 0.25 0.35 -5.33 2.25 3.11 -5.84 6.29 8.28 -8.11 

6 0.38 0.49 -6.04 3.42 4.53 -7.57 9.56 12.89 -13.59 

8 0.50 0.63 -7.72 4.51 5.88 -9.39 12.86 - - 

SS
 ty

pe
 II

 2 0.04 0.08 -1.93 0.40 0.68 -1.92 1.11 1.94 -3.40 

4 0.09 0.15 -3.16 0.81 1.37 -3.88 2.26 3.99 -7.08 

6 0.14 0.22 -4.71 1.23 2.09 -5.93 3.43 6.03 -10.62 

8 0.18 0.29 -6.19 1.65 2.78 -7.74 4.61 - - 

A
L 

ty
pe

 II
 2 0.12 0.19 -4.19 1.08 1.84 -5.19 3.02 5.09 -8.46 

4 0.25 0.36 -6.45 2.20 3.55 -9.30 6.13 10.37 -17.31 

6 0.37 0.53 -9.21 3.33 5.35 -13.84 9.31 15.34 -24.60 

8 0.48 0.70 -12.61 4.47 7.21 -18.77 12.53 - - 

C
FR

P0
0 

2 0.20 0.22 -1.17 1.59 1.91 -2.20 4.41 5.97 -6.36 

4 0.39 0.41 -1.36 3.22 3.96 -5.05 8.94 12.26 -13.51 

6 0.57 0.62 -2.64 4.88 5.99 -7.60 13.58 18.43 -19.79 

8 0.74 0.81 -4.29 6.54 7.95 -9.69 18.26 - - 

C
FR

P3
0 

2 0.54 0.47 4.02 3.64 3.85 -1.44 9.90 8.93 3.98 

4 0.98 0.93 3.20 7.28 7.66 -2.60 20.00 17.55 10.01 

6 1.41 1.40 1.02 10.99 11.48 -3.34 30.33 26.09 17.28 

8 1.80 1.83 -1.62 14.69 15.20 -3.50 40.76 - - 
*dynamic range of d at (Re = 0.2x106) = 1.75 mm 

**dynamic range of d at (Re = 0.6x106) = 14.60 mm 
***dynamic range of d at (Re = 1.0x106) = 24.51 mm 
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Table 25: One-way FSI validation of tip twist 

M
od

el
 

a 

θ [deg]  
Re = 0.2x106 

θ [deg]  
Re = 0.6x106 

θ [deg] 
Re = 1.0x106 

CFD/
CSD 

EFD/
ESD E%θ* CFD/

CSD 
EFD/
ESD E%θ** CFD/

CSD 
EFD/
ESD E%θ*** 

C
FR

P0
0 

2 -0.15 0.01 -81.25 0.06 0.08 -1.42 0.46 0.20 9.28 

4 -0.15 0.01 -82.85 0.26 0.14 6.91 1.06 0.40 23.75 

6 -0.15 0.03 -94.40 0.46 0.18 16.61 1.67 0.58 39.16 

8 -0.15 0.03 -95.36 0.74 0.26 29.44 2.29 - - 

C
FR

P3
0 

2 -0.15 -0.03 -67.21 -0.44 -0.35 -5.64 -1.04 -0.77 -9.48 

4 -0.21 -0.09 -65.38 -0.81 -0.68 -8.00 -2.02 -1.48 -19.59 

6 -0.27 -0.13 -73.25 -1.18 -1.06 -7.84 -3.04 -2.19 -30.65 

8 -0.32 -0.16 -84.02 -1.94 -1.38 -34.05 -4.07 - - 
*dynamic range of θ at (Re = 0.2x106) = 0.19 deg 

**dynamic range of θ at (Re = 0.6x106) = 1.64 deg 
***dynamic range of θ at (Re = 1.0x106) = 2.77 deg 

 

Table 26 One-way FSI deformation average errors with respect to EFD/ESD 

Model 
Re = 0.2x106 Re = 0.6x106 Re = 1.0x106 Average 

d |E|%range 

SS type I 2.97 3.34 4.18 3.49 

AL type I 6.00 6.16 8.17 6.78 

SS type II 4.00 4.87 7.03 5.30 

AL type II 8.12 11.78 16.79 12.23 

CFRP00 2.37 6.14 13.22 7.24 

CFRP30 2.47 2.72 10.42 5.20 

Ave. 4.32 5.83 9.97 6.71 

 θ |E|%range 

CFRP00 88.47 13.60 24.06 42.04 

CFRP30 72.47 13.88 19.91 35.42 

Average 80.47 13.74 21.99 38.73 
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Two-way coupling 

This section presents the results for the FSI test case 2 which is solved using a two-

way coupling approach. Figure 61 shows the contour of the x-velocity over a cross-section 

of the hydrofoil at 95% of the span predicted by the CFD simulation. Analogously, the x-

velocity is shown in Figure 62 to Figure 65 at convergence of the steady FSI using SS, 

AL, CFRP00 and CFRP30 materials. The behavior of the different materials is well 

captured: the SS hydrofoil shows the smallest deformation, followed by the AL one, with 

no significant twist of the tip section; the CFRP00 hydrofoil shows positive twist, while 

the CFRP30 shows negative twist of the tip.  

 
Figure 61: CFD hydrofoil x-velocity contour for Re = 0.6x106 and a = 8 at 95% of the span 

(rigid body model) 
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Figure 62: Two-way FSI SS type II hydrofoil 
displacement and x-velocity contour for Re = 

0.6x106 and a = 8 at 95% of the span 

 
Figure 63: Two-way FSI AL type II hydrofoil 
displacement and x-velocity contour for Re = 

0.6x106 and a = 8 at 95% of the span 

 
Figure 64: Two-way FSI CFRP00 hydrofoil 
displacement and x-velocity contour for Re = 

0.6x106 and a = 8 at 95% of the span 

 
Figure 65: Two-way FSI CFRP30 hydrofoil 
displacement and x-velocity contour for Re = 

0.6x106 and a = 8 at 95% of the span 

Since a two-way approach is used, the deformation affects the hydrodynamic 

forces. The tip twist is expected to change the lift according to its sign: a positive twist, as 

shown by the CFRP00 hydrofoil, by increasing the effective a, increases the lift; on the 

contrary, a negative twist, as shown by the CFRP30 hydrofoil, decreases the effective a 

and, consequently, the lift. Table 27 summarizes the effect of the two-way coupling on the 

force/moment coefficients by comparing the error with respect to the experiment provided 
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by pure CFD and FSI. The difference between the results is expressed by the variable Δ 

defined as 

 Δ = 𝐸%�f� − 𝐸%��n  (79) 

For SS, the prediction of 𝐶n improves, while it worsens for 𝐶Ó and 𝐶n. The AL and 

CFRP00 hydrofoils show the opposite trend. For CFRP30, all coefficient predictions 

improve with the application of the two-way FSI. Table 28 gives the error on the 

hydrodynamic efficiency comparing CFD and FSI. Overall, the hydrodynamic efficiency 

prediction worsens for SS, AL, and CFRP00 while it improves for CFRP30. 

Table 27: Two-way FSI force errors with respect to EFD/ESD 

M
at

er
ia

l 𝐶Ó E%range 𝐶n E%range 𝐶� E%range 

CFD Two-
way FSI Δ CFD Two-

way FSI Δ CFD Two-
way FSI Δ 

SS
 

-0.66 -0.14 -0.52 0.84 0.97 0.13 0.06 -0.12 0.05 

A
L -1.54 -0.45 -1.09 1.71 2.00 0.30 0.61 0.50 -0.11 

C
FR

P0
0 

-2.77 0.75 -2.02 -0.25 0.84 0.60 -0.92 1.45 0.52 

C
FR

P3
0 

7.68 2.40 -5.29 3.37 1.41 -1.96 10.25 0.91 -9.33 
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Table 28: Two-way FSI hydrodynamic efficiency including errors with respect to EFD/ESD 

Material 
Eff Eff E%D 

CFD Two-way FSI EFD/ESD CFD Two-way FSI Δ 

SS 

18.97 

18.95 20.08 -5.52 -5.61 0.09 

AL 18.90 21.4 -11.37 -11.68 0.31 

CFRP00 18.62 19.33 -1.89 -3.68 1.78 

CFRP30 19.32 21.27 -10.84 -9.18 -1.66 

 

Table 29: Two-way FSI deformation errors with respect to EFD/ESD 

Material 
d E%range θ E%range 

CFD/CSD 
one-way FSI 

CFD/CSD 
two-way FSI Δ CFD/CSD 

one-way FSI 
CFD/CSD 

two-way FSI Δ 

SS -7.74 -7.55 -0.19 - - - 

AL -8.50 -7.98 -0.52 - - - 

CFRP00 -9.69 -4.77 -4.92 26.12 28.51 2.39 

CFRP30 -3.50 -12.66 9.15 -34.05 -16.93 -17.12 
 

The same approach is used to assess the error in the deformations (Table 29). The 

two-way FSI improves the prediction of tip displacement for all hydrofoil but the CFRP30. 

Tip twist prediction worsens for the CFRP00 hydrofoil while it significantly improves for 

the CFRP30. In terms of forces, the effect of the two-way coupling is small for metal 

hydrofoils, with 1% maximum change in the error, while it is significant for the composite 

hydrofoils. The CFRP30 is the case that shows a largest sensitivity to the two-way coupling 

(Figure 66). In terms of deformation, the two-way coupling increases the tip displacement 

in the hydrofoils that show positive twist, i.e. metals and CFRP00. The effect on the 

CFRP30 hydrofoil is that of reducing the tip displacement (Figure 67). This behavior 

agrees to the negative twist of the tip section, whose effect is that of reducing the effective 

angle of attack. However, since the CFRP30 displacement was under-predicted by the one-

way FSI simulation, the error corresponding to the two-way FSI increases. 
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Figure 66: Two-way FSI forces including comparison with one-way FSI and EFD/ESD 

 
Figure 67: Two-way FSI deformations including comparison with one-way FSI and EFD/ESD 
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CHAPTER 6:  MULTIDISCIPLINARY DESIGN OPTIMIZATION RESULTS 

Analytical test problems 

The solution of the two-dimensional test problem by MCAS-MDO is achieved with 

86 training points and 380 function evaluations. Figure 68 shows the convergence of the 

optimal objective function and the convergence of the uncertainties versus the number of 

function evaluations intended as total and equally subdivided between disciplines. As the 

process advances, the discrepancy between the predicted optimal function value and the 

true value, evaluated by fully converged MDA for validation purposes, reduces. At each 

iteration, the prediction falls within the uncertainty band defined by the following overall 

uncertainty 

 𝑈A$A = 𝑈48 + 𝑈�8 (80) 

𝑈4, 𝑈�, and 𝑈A$A reduces significantly in 6 iterations (𝑈A$A~0.03%). The 

optimization converges as 𝑈� reaches the prescribed threshold.  

 
Figure 68: MCAS-MDO convergence of objective function (left) and uncertainties (right) for the 

two-dimensional test problem 

Figure 69 shows the Pareto sets and the sampling selection for one iteration of the 

MCAS-MDO in order to illustrate the methodology. ℘4 (yellow) and ℘� (blue) are 

superposed and the overall non-dominated solutions are in ℘ (purple). The samples are 

shown on the right, where green squares indicate points originally in ℘4 and light blue 
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squares indicate a point originally in ℘�. The current predicted optimum is represented by 

a red triangle and it is not included in the set of samples since its uncertainty is below the 

threshold 𝑈¬W�. 

  
Figure 69: Pareto sets and infill/coupling samples selection 

The comparison between MCAS-MDO and MDF is performed using Figure 70 to 

Figure 72. The acronym G-DF is put to highlight that the methods employ a global 

derivative-free approach. The solution by MDF is achieved with 288 training points and 

2124 function evaluations. Figure 70 shows the convergence of the optimal objective 

function value. MCAS-MDO outperforms the MDF requiring one order of magnitude 

fewer function evaluations to achieve the optimum. 
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Figure 70: Convergence of objective function given by MCAS-MDO and MDF for the two-

dimensional test problem 

Figure 71 shows the distribution of training points in the design space. The main 

difference between MCAS-MDO and MDF is that the samples are more clustered around 

the optimum and fewer are located in regions with large objective function value. This 

behavior is confirmed by Figure 72 which displays the training points in the objective 

function-uncertainty space. MCAS-MDO samples show a correlation between 𝑈� and 𝑓: 

the smaller the value of 𝑓, the smaller the associated 𝑈�. This is significant in terms of 

efficient DoE, since many MDA iterations are performed only at promising locations, i.e. 

points with a low function value. Since in the MDF the MDA is iterated until reaching a 

prescribed 𝑈�
(A$j) over the netire domain, many iterations are spent to achieve 𝑈�

(A$j) also 

in regions with a large objective function value. 
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Figure 71: Distribution of training points in the design space given by MCAS-MDO (left) and 

MDF (right) for the two-dimensional test problem 

 
Figure 72: Distribution of training points in the objective function-uncertainty space given by 

MCAS-MDO (left) and MDF (right) for the two-dimensional test problem 

The solution of the three-dimensional test problem by MCAS-MDO is achieved 

with 229 training points and 1034 function evaluations. Figure 73 shows the convergence 

of the optimal objective function and the uncertainties. As the process advances, the 

discrepancy between the predicted optimal function value and the true value, evaluated by 

fully converged MDA for validation purposes, reduces. The optimization converges as 𝑈� 

reaches the prescribed threshold. The maximum number of MDA iterations is 10 for the 

MCAS-MDO and 12 for the MDF. 
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Figure 73: MCAS-MDO convergence of objective function (left) and uncertainties (right) for the 

three-dimensional test problem 

The comparison between MCAS-MDO and the MDF is shown in Figure 74 to 

Figure 76. The solution by MDF is achieved with 372 training points and 3708 function 

evaluations. Figure 74 shows the convergence of the optimal objective function value. 

MCAS-MDO requires fewer function evaluations to achieve the optimum. 

 
Figure 74: Convergence of objective function given by MCAS-MDO and MDF for the three-

dimensional test problem 



www.manaraa.com

94  
	

Figure 75 displays the training points in the objective function-uncertainty space. 

MCAS-MDO samples show, as found for the two-dimensional test problem, a correlation 

between 𝑈� and 𝑓. Few MDA iterations are performed in regions with large objective 

function value. MDF samples are more scatter in the space. The maximum number of MDA 

iterations is16 for the MCAS-MDO and 40 for the MDF. 

 
Figure 75: Distribution of training points in the objective function-uncertainty space given by 

MCAS-MDO (left) and MDF (right) for the two-dimensional test problem 

Tedford and Martins (2010) provide a benchmark solution of the problem, which 

is here used to assess the goodness of the MCAS-MDO and MDF optima. Figure 76 shows 

the errors with respect to the benchmark location, 𝑒[, and objective function value, 𝑒/, as 

 

𝑒[ = 𝑢 − 𝑢.[2�A 8 

𝑒/ =
𝑓 − 𝑓ó.ê/�
𝑓ó.ê/�

 
(81) 

MCAS-MDO shows a faster reduction of 𝑒[ than the MDF. However, MCAS-

MDO final optimum is further away from the benchmark than the one obtained by the 

MDF. On the other hand, the optimal function value achieved by MCAS-MDO in closer 

than the MDF to the benchmark. The efficiency of the methods is assessed by comparison 

with the gradient-based implementation of IDF, SAND, MDF, CO, and CSSO presented 

in Tedford and Martins (2010). Note that in the original paper, the convergence of 𝑒/ is 

given versus computational time. Figure 76 is extrapolated using the total number of 
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function evaluations reported in the paper for each architecture. MCAS-MDO shows an 

average performance with respect to the benchmark data, while the MDF provides the 

worst performance. These results are to be expected since gradient-based architecture are 

usually more efficient than derivative-free approaches. Additionally, the derivative-free 

methods do not achieve the accuracy of gradient-based architectures. 

 
Figure 76: Convergence of optimum location (left) and function value (right) errors for the three-
dimensional test problem (gradient-based IDF, SAND, MDF, CO, and CSSO taken from Tedford 

and Martins 2010) 

Design space analysis 

Assessment 

The total geometric variance 𝜎8 of the design spaces, evaluated by Eq. 42, is given 

in Table 30. By comparing design spaces 1 to 4, characterized by the same type of 

modification, it is possible to assess the effect of the number of FFD control points on the 

design variability and the number of stochastic samples 𝑆 of shape modifications needed 

to perform the KLE. It is found that by increasing the number of control points, 𝜎8 reduces. 

The trend is depicted in Figure 77. Table 30 provides the number 𝑁 of KL modes needed 

to achieve 50, 75, 90, and 99% of the total 𝜎8. As the number of variables increases, the 

number of KL modes needed to retain 50, 75, 90, or 99% of 𝜎8 with respect to the total 

number of variables reduces. This is shown in Figure 78 reporting 𝑁 as percentage of 𝑀. 

For instance, for retaining the 90% of 𝜎8, 59, 27, 14, and 7% of the initial number of 
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variables is required by design spaces 1 to 4, respectively. The normalized cumulative sum 

of the eigenvalues, referred to as KL values, of the design spaces are shown in Figure 79 

to Figure 82. Results are found convergent versus 𝑆. 

Table 30: Design space geometric variance assessment  

Case 𝜎8 
𝑁	 

50%𝜎8 75%𝜎8 90%𝜎8 99%𝜎8 

1 4.34x10
-6

 3 7 10 14 

2 1.42x10
-6

 8 16 27 54 

3 6.90x10
-7

 16 32 55 116 

4 3.50x10
-7

 27 59 105 226 

5 4.61x10
-6

 3 5 11 38 

 
Figure 77: Design space 1 to 4 geometric variances 

 
Figure 78: Number of KL modes needed to retain 50, 75, 90, and 99% of the geometric variance 
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Figure 79: Design space 1 geometric variance 

convergence 

 
Figure 80: Design space 2 geometric variance 

convergence 

 
Figure 81: Design space 3 geometric variance 

convergence 

 
Figure 82: Design space 4 geometric variance 

convergence 

 
Figure 83: Design space 5 geometric variance convergence 

The geometric variance of design space 5 is the largest. The number of eigenvalues 

𝑁 needed to retain the 50, 75, 90, and 99% of the original 𝜎8 indicate a 𝑁/𝑀 value similar 
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to the design space 4. For instance, for retaining the 90% of 𝜎8, 10% of the initial number 

of variables is required. The normalized cumulative sum of the KL values is displayed in 

Figure 83. 

Distributed/concentrated parameters KLE 

Design space 5 is evaluated by combined distributed/concentrated parameter KLE 

comparing six sets of relative weights. The number of eigenvalues required to retain the 

50, 75, 90, and 99% of 𝜎8 is summarized in Table 31. The use of even weights among the 

three parameters leads to the smallest number of modes required to achieve each of the 

dimensionality reduction confidence levels. 

Table 31: Combined distributed/concentrated parameters KLE weights 

Displacement weight  Twist weight  Camber weight  
𝑁 

50 75 90 99 

1.0 0.0 0.0 3 5 11 38 

0.9 0.05 0.05 3 6 13 39 

0.8 0.1 0.1 4 6 12 38 

0.6 0.2 0.2 4 6 11 35 

0.5 0.25 0.25 3 6 10 33 

0.333 0.333 0.333 2 5 9 28 
 

A reduced-dimensionality representation for standard and combined 

distributed/concentrated parameter KLE is built for design space 5. Although the 95% 

confidence level is generally used, in the current research, the 90% threshold of 𝜎8 is 

deemed sufficient and selected to build the reduced-dimensionality representations. 

Purely distributed and combined distributed/concentrated parameter KLE bases 

uses 11 and 9 modes, respectively. The capability of representing a target geometry is 

evaluated using a hydrofoil design characterized by negative tip twist and positive camber. 

The geometry is projected onto the KL modes to find 𝛼E. Figure 84 and Figure 85 show 

the geometry reconstruction by the two models. The combined distributed/concentrated 

parameter KLE basis is found providing a more efficient and accurate representation than 

standard KLE for the problem at hand. 
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Figure 84: Target geometry reconstruction using standard KLE dimensionality reduction 

 
Figure 85: Target geometry reconstruction using combined distributed/concentrated parameters 

KLE dimensionality reduction 

 



www.manaraa.com

100  
	

Dimensionality reduction and re-parametrization 

The eigenvectors of the design space, also referred to as KL vectors, are the 

orthogonal basis for the representation of the reduced dimensionality space. As solution of 

the discrete eigenproblem in Eq. 49, the KL vectors are normalized by 

 𝐳E0	𝐖	𝐳E = 1 (82) 

Any geometry 𝐠 is represented using the KL basis (Eq. 50) in discrete form as 

 𝐠(𝛂) = 𝐠7 + 𝐝 + 𝛼E𝐳E

e

E�R

 (83) 

where 𝐠7 is the original geometry, 𝐝  is the mean geometry modification, which is 

generally be non-zero, 𝐳E are the KL vectors representing the geometry modification in the 

k-direction, and 𝛂 = 𝛼R, 𝛼8, … , 𝛼e 0 is the vector of the linear combination coefficients. 

Herein, the mean modification is negligible hence the term 𝐝  is dropped from the 

formulation. 

Eq. 87 allows for substituting the original design variables 𝐮 with the reduced space 

design variables 𝛂. The original optimization problem in Eq. 24, subject to bound-

constraints for the design variables 𝑎E ≤ 𝑢E ≤ 𝑏E for 𝑘 = 1,… ,𝑀, is reformulated as 

 min
𝐮
			𝑓� 𝛂, 𝐲(𝛂, 𝐲)  (84) 

 subject to  𝑐E ≤ 𝛼E ≤ 𝑑E, 𝑘 = 1,… ,𝑁 (85) 

The lower and upper bounds of 𝛼E are determined by projection of the Monte Carlo 

sampled deviation from the mean of the shape modification on the KL vectors: 

 
𝑐E = inf 	 𝛼E = inf 	 𝐝(𝐮�)0	𝐖	𝐳E  

𝑑E = sup 	 𝛼E = sup 	 𝐝(𝐮�)0	𝐖	𝐳E  
(86) 

Eq. 87 is then written in the form 

 𝐠 𝛂 = 𝐠7 + 𝛼E𝐳E

e

E�R

 (87) 

where 
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𝛼E = 𝛼E/𝑑E with 𝑐E/𝑑E ≤ 𝛼E ≤ 1 

𝐳E = 𝑑E𝐳E 
(88) 

Eq. 87 can be interpreted as a linear combination of the original geometry 𝐠7 with 

the KL basis geometries 𝐠𝒌 = 𝐠0 + 𝐳𝑘 as per 

 𝐠 𝛂 = 𝐠7 1 − 𝛼E

e

E�R

+ 𝛼E𝐠E

e

E�R

 (89) 

The reduced-dimensionality design space is based on design space 5 and the KL 

modes obtained via combined distributed/concentrated parameters KLE. Nine modes, 

retaining 90% of 𝜎8 form the basis for the re-parametrization. The original geometry is 

defined by zero-valued 𝛼E. 

Design variables 

The shape optimization is performed over the reduced-space design variables 𝛂 

associated with the KL modes, so that  𝐮4þ2�. = 𝛂. The modes in the form of 𝐠𝑘 are shown 

in Figure 86 to Figure 94 using color mapping according to the magnitude of the shape 

modification. The range of the variables is approximately −1 ≤ 𝑢E,4þ2�. ≤ 1. 

The geometries 𝐠𝑘 suggests a possible analogy between the KL modes and 

recognizable shapes, such as the modes of a cantilever beam. In the following, the 

geometrical quality of each KL modes is listed: 

1. Camber 

2. 1st order twist (cantilever beam) 

3. 2st order twist (cantilever beam) 

4. 1st order in-plane bending (cantilever beam) 

5. 1st order out-of-plane bending (cantilever beam) 

6. 2st order in-plane bending (cantilever beam) 

7. 2st order out-of-plane bending (cantilever beam) 

8. Membrane 

9. 3rd order twist (cantilever beam) 
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Figure 86: 1st KL mode 

 
Figure 87: 2nd KL mode 
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Figure 88: 3rd KL mode 

 
Figure 89: 4th KL mode 
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Figure 90: 5th KL mode 

 
Figure 91: 6th KL mode 
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Figure 92: 7th KL mode 

 
Figure 93: 8th KL mode 
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Figure 94: 9th KL mode 

The design variable associated with the composite material layout is the fiber 

orientation 𝑢/W3.� = 𝜁. The range of the variable is −90° ≤ 𝑢/W3.� ≤ 90°. The original 

design is assumed having 𝜁 equal to zero, analogously to the CFRP00 model. 

 
Figure 95: Composite material fiber orientation 

In the MDO of the AL hydrofoil, the nine design variables corresponding to the KL 

modes are used. IN the MDO of the CFRP hydrofoil, ten design variables are used. Design 

variables from one to nine correspond to the KL modes; the tenth design variable is the 

fiber orientation. 

! = 0°𝜁 
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Sensitivity analysis 

Aluminum hydrofoil 

The sensitivity analysis for the AL hydrofoil includes 55 FSI simulations, i.e. six 

simulations for each one of the nine design variables plus the simulation of the original 

geometry. Due to the lack of convergence of some simulations, the number of numerically 

feasible designs which are considered in the following analysis is 41. The number of 

function evaluations is 1466 corresponding to 733 CFD and 733 FE analyses. 

Figure 96 to Figure 99 show the sensitivity values for 𝐶Ó, 𝐶n, 𝐶� and 𝐸𝑓𝑓. The 𝐶Ó 

of the original geometry is 0.658, while the values obtained by sensitivity range between 

0.155 and 1.439. The 𝐶n of the original geometry is 0.0348; the sensitivity results range 

between 0.019 and 0.394. The 𝐶� of the original geometry is 0.17; the sensitivity results 

range between 0.051 and 0.291. The 𝐸𝑓𝑓 of the original geometry is 18.90; the sensitivity 

results range between 3.65 and 21.68. The range of variation of the hydrodynamic forces 

for each design variable is given in Table 32. The largest range of variation (375%) 

corresponds to 𝑢æ. 𝐸𝑓𝑓 shows large fluctuations also for 𝑢8 and 𝑢9. 

Figure 100 and Figure 101 show the sensitivity values for the maximum 

displacement 𝛿¬2[ and the failure index 𝜙. The 𝛿¬2[ of the original geometry is 6.1 mm; 

the sensitivity results range between 1.5 and 11.1 mm. The 𝜙 of the original geometry is 

0.22; the sensitivity results range between 0.06 and 0.51. The range of variation of the 

structural parameters for each design variable is given in Table 33. The largest range of 

variation (175%) corresponds to 𝑢æ. 𝛿¬2[ shows large fluctuations also for 𝑢R and 𝑢8. 

Figure 102 to Figure 105 show the sensitivity values for the objective and constrain 

functions. 𝑓 of the original geometry is 0.0348; the sensitivity results range between 0.019 

and 0.394. 𝑐R of the original geometry is -0.019; the sensitivity results range between -1.23 

and 0.76. 𝑐8 of the original geometry is 0; the sensitivity results range between -0.18 and 

0.037. The 𝑐æ of the original geometry is -0.66; the sensitivity results range between -0.91 

and -0.22. The range of variation of the hydrodynamic forces for each design variable is 

given in Table 34. The largest range of variation (336%) corresponds to 𝑢æ. 𝑐8 shows the 

largest fluctuations for 𝑢8. 
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Figure 96: AL lift coefficient sensitivity 

 
Figure 97: AL drag coefficient sensitivity 

 
Figure 98: AL pitching moment coefficient 

sensitivity 

 
Figure 99: AL hydrodynamic efficiency 

sensitivity 
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Table 32: AL hydrodynamic parameter range of variation 

% u1 u2 u3 u4 u5 u6 u7 u8 u9 

𝐶Ó 73.8 99.6 195.1 5.8 1.8 0.8 11.4 89.4 23.1 

𝐶n 120.4 459.4 1075.6 8.4 2.2 0.4 16.1 238.0 36.2 

𝐶� 6.4 67.3 140.9 54.9 15.5 11.9 3.3 33.4 29.5 

𝐸𝑓𝑓 44.0 86.0 80.7 3.2 2.2 0.8 4.5 80.1 19.2 

Average 74.0 167.6 374.4 37.4 5.7 3.8 7.9 91.3 42.2 
 

 
Figure 100: AL displacement sensitivity 

 
Figure 101: AL failure index sensitivity 

Table 33: AL structural parameter range of variation 

% u1 u2 u3 u4 u5 u6 u7 u8 u9 

𝛿¬2[ 135.2 156.8 148.9 3.5 7.7 2.2 12.4 94.4 22.9 

𝜙 105.8 133.9 199.4 4.8 8.8 1.9 12.3 99.0 8.3 

Average 120.5 145.3 174.2 4.1 8.2 2.1 12.3 96.7 15.6 
 

 

 

 



www.manaraa.com

110  
	

 

 

 

 

 
Figure 102: AL f sensitivity 

 
Figure 103: AL c1 sensitivity 

 
Figure 104: AL c2 sensitivity 

 
Figure 105: AL c3 sensitivity 
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Table 34: AL objective and constraint function range of variation 

% u1 u2 u3 u4 u5 u6 u7 u8 u9 

𝑓 120.4 459.4 1075.6 8.4 2.2 0.4 16.1 238.0 36.2 

𝑐R 75.2 101.5 198.9 5.9 1.8 0.8 11.6 91.1 23.6 

𝑐8 4.1 17.7 2.7 0.2 1.0 1.3 5.2 7.6 1.4 

𝑐æ 36.3 45.9 68.4 1.6 3.0 0.7 4.2 34.0 2.8 

Average 59.0 156.1 336.4 4.0 2.0 0.8 9.3 92.7 16.0 
 

Feasible objective function reductions are achieved along the design variables 𝑢ð 

and 𝑢:. 𝑢ð = 0.333 provides the largest improvement followed by 𝑢: = 0.333, 0.667, and 

1. A ranking of the design variable sets is given in Table 35 based on the feasible reduction 

in objective function achieved. Due to the lack of convergence of some CFD simulations, 

the feasible range of variation associated to each variable is reduced. 

Table 35: Ranking of AL sensitivity simulations 

Ranking Variable Description ∆𝑓% 𝑢W 
Simulation feasible 

range 

1 u4 
1st order in-plane 

bending -2.24 0.333 [-0.1;1] 

2 u6 
2st order in-plane 

bending -0.40 0.333 [-0.1;1] 

3 

u1 Camber 0 0 [-0.7;0.7] 

u2 1st order twist 0 0 [-0.7;0.7] 

u3 2st order twist 0 0 [-0.7;1] 

u5 
1st order out-of-plane 

bending 0 0 [-1;1] 

u7 
2st order out-of-plane 

bending 0 0 [-0.7;0.7] 

u8 Membrane 0 0 [-1;1] 

u9 3st order twist 0 0 [-0.7;1] 
 

The best sensitivity analysis simulation, corresponding to the design variable set 

𝐮 = 0,0,0,0.333,0,0,0,0,0 ô, provides 2.24% objective function reduction.  
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Composite material hydrofoil 

The sensitivity analysis for the CFRP hydrofoil includes 61 FSI simulations, i.e. six 

simulations for each one of the ten design variables plus the simulation of the original 

geometry. Due to the lack of convergence of some simulations, the number of numerically 

feasible designs which are considered in the following analysis is 47. The number of 

function evaluations is 1872 corresponding to 936 CFD and 936 FE analyses. 

Figure 106 to Figure 109 show the sensitivity values for 𝐶Ó, 𝐶n, 𝐶� and 𝐸𝑓𝑓. The 

𝐶Ó of the original geometry is 0.678, while the values obtained by sensitivity range between 

0.160 and 1.428. The 𝐶n of the original geometry is 0.0364; the sensitivity results range 

between 0.019 and 0.389. The 𝐶� of the original geometry is 0.18; the sensitivity results 

range between 0.053 and 0.294. The 𝐸𝑓𝑓 of the original geometry is 18.62; the sensitivity 

results range between 3.67 and 20.71. The range of variation of the hydrodynamic forces 

for each design variable is given in Table 36. The largest range of variation (355%) 

corresponds to 𝑢æ. 𝐸𝑓𝑓 shows large fluctuations also for 𝑢8 and 𝑢9. 

Figure 110 and Figure 111 show the sensitivity values for the maximum 

displacement 𝛿¬2[ and the failure index 𝜙. The 𝛿¬2[ of the original geometry is 7.7 mm; 

the sensitivity results range between 1.6 and 28.8 mm. The 𝜙 of the original geometry is 

0.37; the sensitivity results range between 0.11 and 1.01. The range of variation of the 

structural parameters for each design variable is given in Table 37. The largest range of 

variation (255%) corresponds to 𝑢R7 showing that the fiber orientation has a strong effect 

on the deformation. 

Figure 112 to Figure 115 show the sensitivity values for the objective and constrain 

functions. 𝑓 of the original geometry is 0.0364; the sensitivity results range between 0.019 

and 0.389. 𝑐R of the original geometry is -0.049; the sensitivity results range between -1.21 

and 0.75. 𝑐8 of the original geometry is 0; the sensitivity results range between -0.18 and 

0.037. The 𝑐æ of the original geometry is -0.43; the sensitivity results range between -0.83 

and 0.56. The range of variation of the hydrodynamic forces for each design variable is 

given in Table 38. The largest range of variation (325%) corresponds to 𝑢æ. 𝑐8 shows the 

largest fluctuations for 𝑢8, while 𝑐8 for 𝑢R7. 
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Figure 106: CFRP lift coefficient sensitivity 

 
Figure 107: CFRP drag coefficient sensitivity 

 
Figure 108: CFRP pitching moment coefficient 

sensitivity 

 
Figure 109: CFRP hydrodynamic efficiency 

sensitivity 
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Table 36: CFRP hydrodynamic parameter range of variation 

% u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 

𝐶Ó 64.8 94.2 187.2 3.3 1.0 3.8 10.5 79.3 24.7 28.5 

𝐶n 111.0 421.9 1015.8 1.8 2.1 5.6 13.3 239.7 32.2 49.4 

𝐶� 13.8 66.2 137.9 59.6 15.1 8.2 4.2 41.4 30.8 30.9 

𝐸𝑓𝑓 49.3 81.7 80.3 2.0 2.3 2.5 3.3 80.3 22.0 18.4 

Average 59.7 166.0 355.3 16.6 5.1 5.0 7.8 110.2 27.5 31.8 
 

 
Figure 110: CFRP displacement sensitivity 

 
Figure 111: CFRP failure index sensitivity 

Table 37: CFRP structural parameter range of variation 

% u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 

𝛿¬2[ 115.3 141.7 129.4 7.0 5.7 5.9 10.1 81.4 22.7 277.2 

𝜙 50.0 91.4 148.0 17.3 4.1 16.7 9.7 62.8 5.2 175.3 

Average 82.7 116.5 138.7 12.2 4.9 11.3 9.9 72.1 13.9 226.3 
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Figure 112: CFRP f sensitivity 

 
Figure 113: CFRP c1 sensitivity 

 
Figure 114: CFRP c2 sensitivity 

 
Figure 115: CFRP c3 sensitivity 
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Table 38: CFRP objective and constraint function range of variation 

% u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 

𝑓 111.0 421.9 1015.8 1.8 2.1 5.6 13.3 239.7 32.2 49.4 

𝑐R 68.0 98.8 196.3 3.4 1.0 4.0 11.0 83.2 25.9 29.9 

𝑐8 4.1 17.7 2.7 0.2 1.0 1.3 5.2 7.6 1.4 0.0 

𝑐æ 28.3 51.7 83.8 9.8 2.3 9.5 5.5 35.5 2.9 99.2 

Average 52.9 147.5 324.6 3.8 1.6 5.1 8.8 91.5 15.6 44.6 
 

Feasible objective function reductions are achieved along the design variables 𝑢: 

and 𝑢;. 𝑢: = 1 provides the largest improvement followed by 𝑢: = 0.333, 0.667, and 𝑢; = 

0.333. A ranking of the design variable sets is given in Table 39 based on the feasible 

reduction in objective function achieved. Due to the lack of convergence of some CFD 

simulations, the feasible range of variation associated to each variable is reduced. 

Table 39: Ranking of CFRP sensitivity simulations 

Ranking Variable Description ∆𝑓% 𝑢W 
Simulation feasible 

range 

1 u6 2
st
 order in-plane 

bending 
-5.63 1 [-0.1;1] 

2 u7 2
st
 order out-of-plane 

bending 
-1.90 0.333 [-0.7;0.7] 

3 

u1 Camber 0 0 [-0.7;0.7] 

u2 1
st
 order twist  0 0 [-0.7;0.7] 

u3 2
st
 order twist 0 0 [-0.7;1] 

u4 1
st
 order in-plane 

bending 
0 0 [-0.1;1] 

u5 1
st
 order out-of-plane 

bending 
0 0 [-1;1] 

u8 Membrane 0 0 [-1;1] 

u9 3
st
 order twist 0 0 [-0.7;1] 

u10 Fiber orientation 0 0 [-90;90] 
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The best sensitivity analysis simulation, corresponding to the design variable set 

𝐮 = 0,0,0,0,0,1,0,0,0,0 ô, provides 5.64% objective function reduction.  

Aluminum and composite material hydrofoils comparison 

AL and CFRP best sensitivity results are summarized in Table 40. With respect to 

the original designs, the drag coefficient is reduced by 2.2 and 5.6%, The hydrodynamic 

efficiency increases by 0.4 and 2.0%, the maximum displacement reduces by 0.7 and 2.7%, 

for AL and CFRP, respectively. 

Table 40: AL and CFRP best sensitivity solutions 

Parameter 
AL CFRP 

Original Best from 
sensitivity 

Difference 
% Original Best from 

sensitivity 
Difference 

% 

𝐶Ó 0.6583 0.6464 -1.8 0.6775 0.6519 -3.8 

𝐶n 0.0348 0.0341 -2.2 0.0364 0.0343 -5.6 

𝐶� 0.1701 0.2026 19.2 0.1752 0.1896 8.2 

𝐸𝑓𝑓 18.90 18.98 0.4 18.62 18.99 2.0 

𝛿¬2[ 6.10 6.06 -0.7 7.65 7.44 -2.7 

𝜙 0.2230 0.2205 -1.1 0.3680 0.3064 -16.7 

𝑓 0.0348 0.0341 -2.2 0.0364 0.0343 -5.6 

𝑐R -0.0191 -0.0006 1.8 -0.0488 -0.0091 4.0 

𝑐8 -0.0010 -0.0002 0.1 -0.0010 -0.0143 -1.3 

𝑐æ -0.6569 -0.6608 -0.4 -0.4339 -0.5286 -9.5 
 

Multidisciplinary design optimization 

Aluminum hydrofoil 

The solution of the AL hydrofoil problem by MCAS-MDO is achieved using 1666 

function evaluations corresponding to 833 calls to the MDA. Given the partitioned 

approach to the FSI, this corresponds to 833 CFD simulations and 833 FE simulations. 
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1466 function evaluations, performed to assess the sensitivity of the functions of interest 

to the design variables, are used to build the initial DoE while the remaining 200 are 

handled by the MCAS-MDO. The total number of training points used, i.e. the number of 

designs evaluated, is 100, separated in 41 and 59 from the sensitivity analysis (initial DoE) 

and the optimization (MCAS), respectively. 

Figure 116 depicts the history of the optimal solution including the objective 

function value corresponding to the original design. The trend is not monotonic due to the 

refinements of the MDA coupling. Successive iterations of the FSI may either increase or 

reduce the objective function depending on the specific design at hand. Moreover, the final 

solution provided by the optimizer may require additional MDA iterations. Unless the 

associated 𝑈� reaches the prescribed tolerance during the optimization (similarly to what 

presented in the analytical test problem results), a full convergence of the FSI simulation 

should be performed to confirm the optimizer solution (achieving 𝑈� < 1%). Accordingly, 

Figure 116 includes the objective function value corresponding to the optimized design 

which is larger than the MCAS-MDO indication. 

 
Figure 116: Convergence of the objective function given by MCAS-MDO for the AL hydrofoil 

problem 
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Figure 117 depicts the history of 𝑈4, 𝑈�, and 𝑈A$A (Eq. 80). The surrogate model 

uncertainty 𝑈4 is in the range 10-1000% of the original design objective function value. 

The coupling uncertainty 𝑈� oscillates between 0.1 and 10000%. 𝑈� fluctuations 

correspond to the identification of new potential optima. An optimum found after the infill 

procedure usually has large 𝑈� since determined by loose MDA (one-way). At successive 

iterations, the MCAS would generally select such point for additional MDA iterations, thus 

reducing 𝑈�. At the beginning of the optimization, 𝑈� has a small value since the initial 

DoE is made of fully converged MDA evaluations whose associated coupling uncertainty 

is lower than 1%. 𝑈A$A is affected by the fluctuations due to 𝑈� but points to an overall 

converging trend. 𝑈A$A at the final iteration is 41.7%, resulting from the combination of 𝑈4 

= 38.4% and 𝑈� = 16.0%. 

 
Figure 117: Convergence of the uncertainties given by MCAS-MDO for the AL hydrofoil 

problem 

Figure 118 displays the training points in the objective function-uncertainty space, 

differently marking initial DoE and MCAS points. Note that some points in the initial DoE 

do not reach the 1% 𝑈� tolerance within the allowed number of MDA iterations (40). Most 

of MCAS training points is computed using one MDA iteration. The largest number of 

MDA iterations is 9 (18 total function evaluations). 
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Figure 118: Distribution of training points in the objective function-uncertainty space given by 

MCAS-MDO for the AL hydrofoil problem 

Table 41: AL optimal solution 

Parameter Original Optimized Difference % 

𝐶Ó 0.6583 0.6573 -0.16 

𝐶n 0.0348 0.0334 -4.13 

𝐶� 0.1701 0.1076 -36.76 

𝐸𝑓𝑓 18.9011 19.6844 4.14 

𝛿¬2[ 6.0967 5.6299 -7.66 

𝜙 0.2230 0.2167 -2.85 

𝑓 0.0348 0.0334 -4.13 

𝑐R -0.0191 -0.0191 0.00 

𝑐8 -0.0010 -0.0162 -1.52 

𝑐æ -0.6569 -0.6667 -0.98 
 

The optimal design achieved by MCAS-MDO is defined by 
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𝐮 = −0.047,0.201,−0.180,0.199,−0.539, 

−0.026,−0.120,−0.540,−0.141 ô 
(90) 

Table 41 summarizes the optimal design specifications. The objective function, i.e. 

𝐶n, is reduced by 4.1%, which is a meaningful result since larger than the numerical 

uncertainty 𝑈fe=3%. 𝐶Ó and 𝐶� are also reduced while the hydrodynamic efficiency is 

increased. Maximum displacement and failure index are smaller than the original, 

confirming the load-reducing effect of the optimized design. Lift, minimum thickness, and 

material failure constraints are satisfied and margins are qualitatively similar to the original 

design. 

 
Figure 119: AL optimized geometry 

Figure 119 depicts the original and optimized hydrofoil geometries. Several cross-

sections along the span help visualize the design differences. The optimized design is 

slightly bent upward. A negative twist and non-zero camber is shown especially by cross-

sections between 33.3 and 83.3% of the span. The tip section instead appears rather 
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symmetric. Figure 120 shows the planforms indicating a modest curvature of leading and 

trailing edges toward the incoming flow direction. 

 
Figure 120: AL optimized planform 

 
Figure 121: AL original geometry x-velocity 

contours in the xy plane 

 
Figure 122: AL optimized geometry x-velocity 

contours in the xy plane 

Figure 121 to Figure 124 show the contour of the x-velocity around the hydrofoil and the 

wake comparing original and optimized geometries. Figure 121 and Figure 122 use xy-

planes at 5, 50, and 95% of the span. Figure 123 and Figure 124 use yz-planes at several 
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stream-wise distances, multiples of the mean chord, from the hydrofoil. In both cases, 

original and optimized designs show a similar behavior characterized by steady flow 

attached to the body and straight wake subject to comparable dissipation. 

 
Figure 123: AL original geometry x-velocity 

contours in the yz plane 

 
Figure 124: AL optimized geometry x-velocity 

contours in the yz plane 

 
Figure 125: AL original geometry streamlines 

 
Figure 126: AL optimized geometry streamlines 

Figure 125 and Figure 126 show a rake streamlines starting at the same location for the 

original and optimized designs. In both cases, the flow is attached to the body. The tip 

vortex, clearly visible in Figure 125, is loosely defined in Figure 126 due to the deflection 

of the flow given by the optimized geometry. 
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Figure 127: AL original geometry streamlines 

through the tip vortex and Q contours  

 
Figure 128: AL optimized geometry streamlines 

through the tip vortex and Q contours 

 
Figure 129: AL original geometry tip vortex 

detail 

 
Figure 130: AL optimized geometry tip vortex 

detail 

Figure 127 to Figure 130 show in more detail the tip vortex using the Q criterion. 

Figure 127 and Figure 128 present the streamlines around the vortex while Figure 129 and 
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Figure 130 show the contour of x-velocity and Q criterion. The vortex intensity in the 

optimized design is reduced from approximately Q = 17000 to Q = 14000. 

 
Figure 131: AL original geometry pressure 

distribution  

 
Figure 132: AL optimized geometry pressure 

distribution 

 
Figure 133: AL original geometry lift 

distribution  

 
Figure 134: AL optimized geometry lift 

distribution 

Figure 131 and Figure 132 show the pressure distribution over the hydrofoils 

including lower (pressure) and upper (suction) sides. Smallest and largest pressure values 

on the optimized geometry are located toward the root. The pressure is overall lower than 

in the original geometry on a large area around 2/3 of the span. Figure 133 and Figure 134 

show the lift distribution along the span, built by normal force integration along the chord, 
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compared with the ideal elliptical distribution and confirm an increased loading close to 

the root and reduced loading toward the tip. Figure 135, Figure 136, and Figure 137 depict 

the pressure distribution around the hydrofoil over three cross-sections at 5, 50, and 85% 

of the span. Close to the root, the distribution is similar between original and optimized 

designs. At mid-span and toward the tip, the optimized design shows a significant re-

distribution of the pressure drastically reducing the difference toward the leading edge. 

 
Figure 135: AL sectional pressure distribution 

at 5% of the span 

 
Figure 136: AL sectional pressure distribution 

at 50% of the span 

 

Figure 137: AL sectional pressure distribution at 85% of the span 
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Figure 138: AL original geometry displacement distribution 

 
Figure 139: AL optimized geometry displacement distribution 
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Figure 138 and Figure 139 present the hydrofoil deformation in terms of 

distribution of displacement ([mm]). Overall, the main displacement component is the out-

of-plane 𝛿Y. In the original geometry, a small positive tip twist, revealed by slightly oblique 

contour lines in the 𝛿Y figure, increases the effective angle of attack while the optimized 

design reduces the tip twist. 𝛿[ and 𝛿\ are generally larger in the optimized design but they 

still play a minor role, compared to 𝛿Y. Figure 140 and Figure 141 show the distribution of 

the failure index over the hydrofoils. In both cases, the largest value is included between 

upper and lower sides. Overall, the largest stresses are on the suction side. The value of 𝜙 

is comparable between designs and far from the failure limit. 

 
Figure 140: AL original geometry failure index 

distribution  

 
Figure 141: AL optimized geometry failure 

index distribution 

Composite material hydrofoil 

The solution of the CFRP hydrofoil problem by MCAS-MDO is achieved using 

2072 function evaluations corresponding to 936 calls to the MDA (936 CFD simulations 

and 936 FE simulations). 1872 function evaluations, performed to assess the sensitivity of 

the functions of interest to the design variables, are used to build the initial DoE while the 

remaining 200 are handled by the MCAS-MDO. The total number of training points used, 

i.e. the number of designs evaluated, is 94, divided in 47 and 53 from the sensitivity 

analysis (initial DoE) and the optimization (MCAS), respectively. 
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Figure 142 depicts the history of the optimal solution including the objective 

function value corresponding to the original design. The trend is not monotonic due to the 

refinements of the MDA coupling. The final solution provided by the optimizer is iterated 

till full convergence of the FSI simulation to define the optimized design. The optimal 

solution is included in the figure and the objective function value is smaller than the 

MCAS-MDO indication. 

 
Figure 142: Convergence of the objective function given by MCAS-MDO for the CFRP hydrofoil 

problem 

Figure 143 depicts the history of 𝑈4, 𝑈�, and 𝑈A$A. The surrogate model uncertainty 

𝑈4 is in the range 10-1000% of the original design objective function value. The coupling 

uncertainty 𝑈� oscillates between 0.01 and 10000% according to the identification of new 

potential optima. 𝑈� has a small value at the beginning of the optimization since the initial 

DoE is made of fully converged MDA evaluations whose associated coupling uncertainty 

is lower than 1%. 𝑈A$A shows the fluctuations due to 𝑈� but points to an overall converging 

trend. 𝑈A$A at the final iteration is 40.5%, resulting from the combination of 𝑈4 = 40.1.4% 

and 𝑈� = 5.47%. 
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Figure 143: Convergence of the uncertainties given by MCAS-MDO for the CFRP hydrofoil 

problem 

 
Figure 144: Distribution of training points in the objective function-uncertainty space given by 

MCAS-MDO for the CFRP hydrofoil problem 

Figure 144 displays the training points in the objective function-uncertainty space, 

differently marking initial DoE and MCAS points. Note that some points in the initial DoE 

do not reach the 1% 𝑈� tolerance within the allowed number of MDA iterations (40). Most 
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of MCAS training points is computed using one MDA iteration. The largest number of 

MDA iterations is 14 (28 total function evaluations). 

The optimal design achieved by MCAS-MDO is defined by 

 
𝐮 = −0.123,0.190,−0.168,0.062,−0.219, 

0.273,0.439,−0.571,0.030,2.763 ô 
(91) 

Table 42 summarizes the optimal design specifications. The objective function, i.e. 𝐶n, is 

reduced by 10.8%, which is a meaningful result since larger than the numerical uncertainty 

𝑈fe=3%. 𝐶Ó and 𝐶� are also reduced while the hydrodynamic efficiency is increased 

indicating a load-reducing effect of the optimized design. Although the maximum 

displacement is larger than the one showed by the original design, the failure index is 

smaller. The different behavior of displacement and ratio is due to the change in fiber 

orientation, which affects the material properties. Lift, minimum thickness, and material 

failure constraints are satisfied with the 𝐶Ó being close to the lower bound of the feasible 

space. 

Table 42: CFRP optimal solution 

Parameter Original Optimized Difference % 

𝐶Ó 0.6775 0.6453 -4.76 

𝐶n 0.0364 0.0325 -10.75 

𝐶� 0.1752 0.0959 -45.25 

𝐸𝑓𝑓 18.6225 19.8720 6.71 

𝛿¬2[ 7.6475 8.4829 10.92 

𝜙 0.3680 0.3221 -12.47 

𝑓 0.0364 0.0325 -10.75 

𝑐R -0.0488 -0.0004 4.84 

𝑐8 -0.0010 -0.0353 -3.43 

𝑐æ -0.4339 -0.5045 -7.06 
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Figure 145: CFRP optimized geometry 

 
Figure 146: CFRP optimized planform (left) and fiber orientation (right) 

Figure 145 depicts the original and optimized hydrofoil geometries. The optimized 

design is slightly bent upward from the root section till 65% of the span while it is bent 

downward from 65% to the tip section. A negative twist and non-zero camber is shown by 

all non-root cross-sections. Figure 146 shows, on the left, the planforms indicating a 
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significant curvature of leading and trailing edges toward the incoming flow direction and, 

on the right, the fiber orientation, which is slightly inclined toward the leading edge. 

 
Figure 147: CFRP original geometry x-velocity 

contours in the xy plane 

 
Figure 148: CFRP optimized geometry x-

velocity contours in the xy plane 

 
Figure 149: CFRP original geometry x-velocity 

contours in the yz plane 

 
Figure 150: CFRP optimized geometry x-

velocity contours in the yz plane 

Figure 147 to Figure 150 show the contour of the x-velocity around the hydrofoil 

and the wake over xy- and yz-planes. Original and optimized designs show a similar 

behavior characterized by steady flow attached to the body. The wake of the optimized 

design appears curved which is consistent with the hydrofoil reshaping. 



www.manaraa.com

134  
	

Figure 151 and Figure 152 show the streamlines around the hydrofoils showing the 

flow attached to the body. Figure 152 shows the flow deflection due to the optimized shape. 

 
Figure 151: CFRP original geometry streamlines 

 
Figure 152: CFRP optimized geometry 

streamlines 

 
Figure 153: CFRP original geometry streamlines 

through the tip vortex and Q contours  

 
Figure 154: CFRP optimized geometry 

streamlines through the tip vortex and Q 
contours 
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Figure 155: CFRP original geometry tip vortex 

detail 

 
Figure 156: CFRP optimized geometry tip 

vortex detail 

Figure 153 to Figure 156 show in more detail the tip vortex using the Q criterion. 

The vortex intensity in the optimized design is slightly increased from approximately Q = 

18000 to Q = 19000. 

Figure 157 and Figure 158 show the pressure distribution over the hydrofoils 

including lower (pressure) and upper (suction) sides. Smallest and largest pressure values 

on the optimized geometry are located toward the root. The pressure is overall lower than 

in the original geometry on a large area around 2/3 of the span. Figure 159 and Figure 160 

show the lift distribution along the span compared with the ideal elliptical distribution. The 

load between root and 50% of the span is reduced while it is increased between 50 and 

90%. Figure 161, Figure 162, and Figure 163 depict the pressure distribution around the 

hydrofoil over three cross-sections at 5, 50, and 85% of the span. Close to the root, the 

distribution is similar between original and optimized designs with a slight reduction of the 

upper/lower sides pressure difference at the leading edge. At mid-span and toward the tip, 
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the optimized design shows a significant re-distribution of the pressure drastically reducing 

the difference toward the leading edge. 

 
Figure 157: AL original geometry pressure 

distribution  

 
Figure 158: AL optimized geometry pressure 

distribution 

 

 
Figure 159: CFRP original geometry lift 

distribution  

 
Figure 160: CFRP optimized geometry lift 

distribution 
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Figure 161: CFRP sectional pressure 

distribution at 5% of the span 

 
Figure 162: CFRP sectional pressure 

distribution at 50% of the span 

 

Figure 163: CFRP sectional pressure distribution at 85% of the span 

Figure 164 and Figure 165 present the hydrofoil deformation in terms of 

distribution of displacement ([mm]). The main displacement component is the out-of-plane 

𝛿Y. In the original geometry, a significant positive tip twist increases the effective angle of 

attack while the optimized design shows a significant negative tip twist. 𝛿[ and 𝛿\ are 

generally larger in the optimized design but they still play a minor role, compared to 𝛿Y. 

Figure 166 and Figure 167 show the distribution of the failure index over the hydrofoils. 

In both cases, the largest value among all composite material layers is showed. In the 
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original design there is a stress concentration at the leading which is absent in the optimized 

geometry. 𝜙 is, in both cases, far from the failure limit. 

 
Figure 164: CFRP original geometry displacement distribution 

 
Figure 165: CFRP optimized geometry displacement distribution 
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Figure 166: CFRP original geometry pressure 

distribution 

 
Figure 167: CFRP optimized geometry pressure 

distribution 

Aluminum and composite material hydrofoils comparison 

The AL and CFRP optimized designs show added camber, whose effect is that of 

increasing the load, and negative twist, whose effect is that of reducing the load. Overall, 

the global loading, as expressed by 𝐶Ó and 𝐶n, is reduced. With respect to the original 

designs, 𝐶n reduces by 4.1 and 10.8%, 𝐸𝑓𝑓 increases by 4.1 and 6.7%, and 𝛿¬2[ reduces 

by 7.7 and increase by 10.9%, for AL and CFRP, respectively. The original AL hydrofoil 

has lower drag than the original CFRP, indicating that the larger deformation of the CFRP 

model with positive tip twist is effectively increasing the load. On the contrary, the 

optimized CFRP hydrofoil has lower drag than the optimized AL, which correlates with 

the significant load reducing negative tip twist showed by the CFRP model versus the 

negligible twist of the AL structure. 

Table 43: Summary of the optimization results  

Parameter Original AL Optimized AL Original CFRP Optimized CFRP 

𝐶Ó 0.658 0.657 0.678 0.645 

𝐶n 0.0348 0.0334 0.0364 0.0325 

𝐸𝑓𝑓 18.9 19.7 18.6 19.9 

𝛿¬2[ 6.10 5.63 7.65 8.48 
 



www.manaraa.com

140  
	

Table 44 gives the change in the value of the first five natural frequencies in vacuum 

between the original and the optimized geometry. The frequencies reduce by average 6.6 

and 6.9% for AL and CFRP, respectively. 

Table 44: Change of natural frequencies in vacuum 

Mode 
fn [Hz] 

AL 
original 

AL 
optimized 

Difference 
% 

CFRP 
original 

CFRP 
optimized 

Difference 
% 

1 109.12 101.76 -6.74 119.18 116.37 -2.36 

2 456.82 434.33 -4.92 385.59 356.42 -7.57 

3 780.34 711.14 -8.87 457.39 443.02 -3.14 

4 1113.0 1027.9 -7.65 834.32 711.33 -14.74 

5 1153.5 1097.1 -4.89 996.3 930.25 -6.63 
 

Figure 168 depicts, in the form of a bar chart, the values of the design variables 

associated with the shape. A similar trend is showed by design variables 𝑢R, 𝑢8, 𝑢æ, 𝑢ð, 𝑢î, 

and 𝑢9, which are qualitatively associated with camber, first and second order twist, first 

in-plane bending, first order out-of-plane bending, and membrane behaviors. 𝑢8, 𝑢æ, and 

𝑢9 especially have comparable values. 

 
Figure 168: AL and CFRP design variables 
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CHAPTER 7:  CONCLUSIONS 

A research study has been presented for the development and validation of a 

surrogate-based multi-criterion adaptive sampling multidisciplinary design optimization 

(MCAS-MDO) architecture with application to a complex engineering problem. MCAS-

MDO performs global derivative-free optimization using high-fidelity black-box solvers 

to evaluate the disciplines. MCAS-MDO was firstly validated using analytical test 

problems and then applied to a complex engineering application. The problem at hand was 

the design of a composite material marine structure subject to fluid-structure interaction 

(FSI). Available experimental data for the original design allowed validating the MDA 

tool. To select the proper design space with the minimum number of design variables, a 

design space assessment and dimensionality reduction technique was applied ahead of the 

optimization procedure. The MDO aimed at the minimization of the drag under steady FSI 

conditions subject to hydrodynamic, structural, and geometric constraints. External shape 

design and composite material layout were both considered in the optimization. 

In the MCAS-MDO, the objective function was determined by multi-disciplinary 

analysis (MDA) realized through coupling of partitioned black-box solvers for the 

hydrodynamics and the structural dynamics simulating FSI (related FSI work was 

published in Volpi et al. 2015b, 2016, and 2017b). The interaction between the disciplines 

and the optimization procedure were handled by the multi-criterion adaptive sampling 

(MCAS) which: (1) identifies locations where performing additional MDA and (2) selects 

available MDA that require additional iterations to improve the multi-disciplinary 

consistency. MCAS uses a surrogate model (DRBF, published in Volpi et al. 2015a) to 

approximate the objective function and define the sampling, the latter based on the 

surrogate model uncertainty and the coupling uncertainty of the MDA. This was carried 

out by solving a multi-objective optimization problem, including minimizing the objective 

function and maximizing the uncertainties, and down-sampling the resulting Pareto frontier 

of non-dominated solutions to the desired number of infill points. MCAS was published 

for single discipline optimization in Diez et al. (2015b) and extended to MDO in Volpi et 

al. (2017) and Volpi et al. (2018). 

The analytical test problem solution by MCAS-MDO was compared to the solution 

obtained by a global derivative-free implementation of the multidisciplinary feasible 
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(MDF) architecture. Results showed that the MCAS-MDO converges faster than the MDF 

and provides a more effective sampling of the design space. MDA evaluations were 

concentrated in promising regions; few iterations were spent far away from the optimum 

while several iterations allowed an accurate description of the objective function around 

the optimal value. 

The marine structure under investigation was a hydrofoil which was experimentally 

(Zarruk et al. 2014) and numerically (Garg et al. 2015, Garg et al. 2017) studied in earlier 

research. The hydrofoil was clamped at the root section and free at the tip section. 

Hydrodynamic, structural dynamic, and FSI analyses, carried out using the RANS solver 

CFDShip-Iowa and the finite element (FE) solver ANSYS Mechanical APDL, were 

performed for a stainless steel, aluminum (AL), and two carbon fiber-reinforced plastic 

(CFRP) models and validated against experimental benchmark. 

Hydrodynamic simulation conditions included several Reynolds numbers and 

angles of attack in both the pre- and post-stall ranges. To capture the frequency content at 

post-stall conditions, detached eddy simulation was used. Pre-stall forces were found well 

predicted (E<2%). Post-stall forces were found qualitatively captured (E=15%). CFD 

verification was carried out for one flow condition to evaluate the numerical uncertainty 

on the outputs of interest (6% for lift, 3% for drag). The structural simulations aimed at the 

identification of the modal frequencies of the hydrofoils which agreed with the experiments 

(E=8%). A FE grid study was performed showing solution convergence. One-way coupling 

steady FSI simulations were performed at several Reynolds numbers for pre-stall angles of 

attack indicating satisfactory agreement. The average error in the prediction of the 

hydrofoil tip displacement was 8%, while E=39% was found for the tip twist. Metal 

hydrofoils showed a small tip displacement (<5% of span) and no tip twist. CFRP 

hydrofoils showed larger tip displacement (16% of span) and positive/negative tip twist 

depending on the orientation of the fibers. Two-way coupling steady FSI was performed 

for one design condition. Results for different materials indicated that the effects of the 

two-way coupling were significant when tip displacement and twist were significant, 

especially in case of negative twist. 

The free-form deformation (FFD) was used to generate shape modifications of the 

hydrofoil. The design space assessment was performed by Karhunen–Loève expansion 



www.manaraa.com

143  
	

(KLE) which allowed for quantifying the associated geometric variability. Several spaces 

with different types of modification were compared and the one with largest variability was 

selected. An inverse relationship between the number of FFD control points and the 

geometric variability was found. A reduced dimensionality representation of the design 

space was achieved by combination of distributed and concentrated geometrical parameters 

in the KLE procedure (as published in Volpi et al. 2017). The approach aimed at steering 

the dimensionality reduction process toward physically meaningful design variables 

without the need for high-fidelity function evaluations. The design space dimensionality 

was reduced by 92%. A qualitative analogy was determined between the KLE-defined 

shape basis functions and the modes of a cantilever beam. 

Sensitivity analysis was preliminarily carried out to build the initial design of 

experiment (DoE). Simulations were performed for the AL and CFRP hydrofoils including 

the nine design variables defining the shape and a tenth variable for the fiber orientation in 

the composite material. 41 and 47 designs were evaluated for the AL and CFRP problem, 

respectively. For the AL hydrofoil, 1466 high-fidelity function evaluations were required 

to achieve convergence of the MDA corresponding to 733 CFD and 733 FE simulations. 

For the CFRP hydrofoil, 1872 high-fidelity function evaluations were performed 

corresponding to 936 CFD and 936 FE simulations. The analysis showed an average 

change in the objective and constraint functions up to 300%. The fiber orientation strongly 

affected the deformation providing 230% average change. The best solutions in the 

sensitivity set yielded 2.2% and 5.6% drag reduction for the AL and CFRP hydrofoils, 

respectively. 

The optimizations were carried out using the DoE provided by the sensitivity 

analysis and allowing additional 200 high-fidelity function evaluations. For the AL 

hydrofoil, 59 designs were selected by the MCAS while 41 MDA iterations were spent to 

refine the coupling at available training points. MCAS-MDO uncertainties were large, 

indicating the possibility of further objective function improvements. Nonetheless, they 

showed an overall converging trend. The optimized solution showed a reduction of the drag 

by 4.1%, an increase of the hydrodynamic efficiency by 4.1%, and a decrease in the 

maximum displacement by 7.7%. The optimized geometry was characterized by upward 

span-wise curvature, added camber, and negative twist of the middle cross-sections. The 
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planform was found similar to the original design. For the CFRP hydrofoil, 47 designs 

were selected by the MCAS and 47 MDA iterations were spent to refine the coupling at 

available training points. MCAS-MDO uncertainties were large, indicating the possibility 

of further objective function improvements, but showed an overall converging trend. The 

optimized solution showed a reduction of the drag by 10.8%, an increase of the 

hydrodynamic efficiency by 6.7%, and an increase in the maximum displacement by 

10.9%. The optimized geometry was characterized by downward span-wise curvature, 

added camber, and negative twist; the planform showed a significant leading and trailing 

edge curvature toward the incoming flow. The optimal fiber orientation was found equal 

to 2.7 degrees. Overall, both AL and CFRP designs provided a redistribution of the pressure 

over the hydrofoil, drastically reducing the pressure difference between pressure and 

suction sides close to the leading edge. The modal frequencies of both the optimized 

models reduced by approximately 6.8%. 

Overall, the application of the MCAS-MDO was found successful in overcoming 

some of the current limitations of state-of-the-art MDO techniques. The effective off-line 

dimensionality reduction using the KLE approach with combined distributed/concentrated 

geometrical parameters provided a 92% dimensionality reduction, alleviating the issue of 

large dimensionality in shape optimization. Black-box simulation tools were employed 

requiring no gradient approximation. The effective design space sampling by extension of 

the MCAS to multidisciplinary problems (clustering of accurate MDA around the 

optimum) showed the capability in performing optimization using a global approach. The 

optimization achieved 4-11% drag reduction using global derivative-free optimization over 

nine- and ten-dimensional design spaces by evaluation of approximately 100 designs. The 

current methodology and results extended optimization studies available in the literature 

(Garg et al. 2017) to global MDO including optimization of the composite material layout. 

The application of the MCAS-MDO architecture proved that the methodology is suitable 

for complex engineering problems allowing for a computationally feasible high-fidelity 

analysis using specialized solvers available to the designer. 

In order to improve the efficiency of the architecture for hydro-structural MDO, a 

re-formulation of the problem with separated sub-system structural optimization may be 

investigated in future research. Furthermore, since the adaptive sampling procedure is 
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based on balancing uncertainties, the MCAS could be naturally extended to (1) unsteady 

problems, where the distance from statistical convergence is treated as a source of 

uncertainty, and to (2) stochastic optimization, by including uncertain design parameters 

such as operating conditions and manufacturing tolerances. The development of MCAS-

MDO is deemed mature for the application to hydro-structural naval problems such as fast 

planing hull slamming. 
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APPENDIX 

Multidisciplinary design optimization problem 

Definitions 

Let assume the multidisciplinary optimization problem at hand is single objective 

that its design variables are continuous, and the objective and constraint functions are 

differentiable. The optimality is assessed by the Karush-Kuhn-Tucker (KKT) conditions 0 

and it is intended in a local sense. 

The number of disciplines is 𝑁 and the index 𝑖 is used to denote the 𝑖th discipline. 

The set of design variables	𝐮 = 𝐮7ô, 𝐮Rô, … , 𝐮eô  is under the direct control of the optimizer 

and it includes the variables 𝐮7 shared by disciplines and the variables 𝐮W that apply to the 

single 𝑖th discipline. The outputs of the disciplines, i.e. the responses of the analyses to the 

given design, are the coupling variables 𝐲 = 𝐲Rô, … , 𝐲eô . Then, state variables 𝐳 =

𝐳Rô, … , 𝐳eô  are specific to each discipline and used only within the corresponding discipline 

analysis.  

Each discipline is governed by a set of equations, which can be expressed in the 

residual form as 𝐑W = 𝟎. Objective and constraint functions can be either specific to a 

discipline, 𝑓W and 𝐜W, or shared by more than one, 𝑓7 and 𝐜7. The initial guess of design, 

coupling, and state variables is indicated by 𝐮(7), 𝐲(7), and 𝐳(7), respectively; the optimal 

values are 𝐮∗, 𝐲∗, and 𝐳∗. 

General formulation 

The general formulation of the problem is 

 

min
𝐱,𝐲,𝐳

𝑓 𝐮, 𝐲 = 𝑓7 𝐮, 𝐲 + 𝑓W 𝐮7, 𝐮W, 𝐲W

e

W�R

 

(92) 
subject to    𝐜7 𝐮, 𝐲 ≤ 0 

 𝐜W 𝐮7, 𝐮W, 𝐲W ≤ 0 

 𝐑W 𝐮7, 𝐮W, 𝐲W, 𝐳W = 0 

with  𝑖 = 1,… ,𝑁 
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The governing equations of the disciplines are treated explicitly as constraint 

functions. In general, the formulation can be regarded as a constrained nonlinear 

programming problem. 

Monolithic architectures 

Monolithic architectures have the same structure of the general formulation in Eq. 

92, where disciplines boundaries are not taken into account explicitly. Four monolithic 

architectures will be presented in the following sections: the all-at-once problem statement 

(AAO), the simultaneous analysis and design (SAND), the individual discipline feasible 

architecture (IDF), and the multidisciplinary feasible architecture (MDF). 

All-at-once problem 

An implementation that treats all the variables explicitly requires creating copies of 

the coupling variables in order to run different disciplines independently. These variables 

copies are denoted by 𝐲 = 𝐲Rô, … , 𝐲eô . When copies of the same variable have different 

value, the overall consistency of the framework is compromised. In order to address the 

issue, consistency constraints 𝐜W are introduced enforcing 𝐲W = 𝐲W at the optimum. The 

formulation of the AAO includes variables copies and consistency constraints 

 

min
𝐱,𝐲,𝐳,𝐲

𝑓 𝐮, 𝐲  

(93) 

subject to    𝐜7 𝐮, 𝐲 ≤ 0 

 𝐜W 𝐮7, 𝐮W, 𝐲W ≤ 0 

 𝐜W = 𝐲W − 𝐲W = 0 

 𝐑W 𝐮7, 𝐮W, 𝐲W, 𝐲W, 𝐳W = 0 

with  𝑖 = 1,… ,𝑁 

In the AAO approach, the optimizer runs simultaneously toward the optimization 

process convergence and the MDA convergence. The MDA converges as the optimizer 

satisfies the consistency constraints. Figure A. 1 shows the AAO procedure; note that 𝐲 

and 𝐜 represent in this case all coupling variables and constraints, including variable copies 

and consistency constraints. 
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Figure A. 1: AAO architecture 

Simultaneous analysis and design 

In practice, consistency constraints may be treated implicitly. By avoiding the 

introduction of 𝐲, the constraints 𝐜 can be eliminated from the formulation. This allows for 

using directly Eq. 92, which represents the SAND architecture. Figure A. 1 depicts also the 

SAND structure, with 𝐲 and 𝐜 not including variables copies and consistency constraints. 

As for the AAO architecture, the analysis and the design are performed simultaneously. 

In order to lighten the computational effort, a low-fidelity solution of the single 

discipline (i.e. simulation not completely converged) can be accepted according to the 

advancement of the optimization process. Such solution is infeasible, since 𝐑W = ∆	≠ 0, 

and accordingly the corresponding design. However, as the optimization moves toward 

convergence, a more severe constraint can be use aiming at ∆	→ 0 and eventually 𝐑W = 0 

at the optimum. This approach may save resources by reducing the computational time 

spent in obtaining an exact solution from the discipline analysis for suboptimal designs. 

Individual discipline feasible 

AAO and SAND architectures treats the governing equations of the disciplines 

explicitly as constraints. However, the single discipline may be described by a black-box 

tool. A black-box is a software, code, or model that does not make available to the user the 

residuals of the governing equations or the state variables. The interface between black-
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box tools and optimization framework may be limited to the coupling variables. The 

resulting formulation, where 𝐑W and 𝐳W have been eliminated, represents the IDF 

architecture. 

In order to remove analysis constraints and variables, the coupling variables are 

expressed directly as function of the design variables and the variable copies according to 

the implicit function theorem 

 

If  𝐑W = 𝐹 𝐮7, 𝐮W, 𝐲W, 𝐲W, 𝐳W = 0 

(94) then  𝐲W = 𝐺 𝐮7, 𝐮W, 𝐲W  

 𝐳W = 𝐻 𝐮7, 𝐮W, 𝐲W  

Since the disciplines are solved as black-box, the equations for 𝐳W can be dropped 

from the optimization problem formulation leading to 

 

min
𝐱,𝐲,𝐳,𝐲

𝑓 𝐮, 𝐲(𝐮, 𝐲)  

(95) 

subject to    𝐜7 𝐮, 𝐲(𝐮, 𝐲) ≤ 0 

 𝐜W 𝐮7, 𝐮W, 𝐲W(𝐮7, 𝐮W, 𝐲U%W) ≤ 0 

 𝐜W = 𝐲W − 𝐲W(𝐮7, 𝐮W, 𝐲U%W) = 0 

with  𝑖 = 1,… ,𝑁 

The name of the architecture refers to the assumption that disciplines are solved 

exactly, providing always feasible solutions in terms of analysis constraints (𝐑W). Such 

assumption is required in order to apply the implicit function theorem; it does not imply 

that the design is feasible at each iteration, since the other constraints may not be satisfied. 

The IDF architecture is shown in Figure A. 2. Firstly, disciplines are solved in 

parallel using the values for 𝐮 and 𝐲 provided by the optimizer. Then, objective and 

constraint functions are computed using the analysis response 𝐲W supplied by each of the 

discipline, and the design variables 𝐮. Advantages of using the IDF formulation versus 

SAND include reducing the size of the optimization problem, which does no longer include 

the state variables, and performing discipline analyses exploiting pre-existing software, 

whose source code may be hidden. 
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Figure A. 2: IDF architecture 

Multidisciplinary feasible 

The multidisciplinary feasibility of the MDF refers to the fact that a complete MDA 

is solved at each iteration of the optimization. Hence, the design is always feasible in terms 

of discipline interaction. If the analysis equations are treated implicitly as for the IDF 

method, the design is also individual discipline feasible; again, it does not imply that the 

design is feasible at each iteration, since the other constraints may not be satisfied. Since 

the MDA is solved at each iteration, the consistency constraints are automatically satisfied 

and can be dropped obtaining the MDF formulation 

 

min
𝐱,𝐲,𝐳,𝐲

𝑓 𝐮, 𝐲(𝐮, 𝐲)  

(96) 
subject to    𝐜7 𝐮, 𝐲(𝐮, 𝐲) ≤ 0 

 𝐜W 𝐮7, 𝐮W, 𝐲W(𝐮7, 𝐮W, 𝐲U%W) ≤ 0 

with  𝑖 = 1,… ,𝑁 

Figure A. 3 shows the structure of the MDF architecture. The MDA box indicates 

the inner loop in the process needed to achieve convergence of the multidisciplinary 

system. Several methods are available to solve the MDA. A rather intuitive approach is the 

Gauss-Seidel method: given 𝑁 disciplines, let 𝐲(7) being the initial guess for the coupling 

variables; the discipline analyses are performed sequentially, updating 𝐲W when the 𝑖th 
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discipline is solved; the 𝑁 sequential steps are then iterated until convergence of the 

coupling variables. 

The advantage of using the MDF architecture versus AAO, SAND, and IDF, is 

having a feasible design at each iteration, allowing for an improvement over the original 

design even if the optimization process is not carried out until convergence. Moreover, the 

size of the optimization problem is further reduced compared to the IDF architecture. The 

main disadvantage lays in the large computational effort required to solve a complete MDA 

at each iteration. 

 
Figure A. 3: MDF architecture 

Partitioned architectures 

As opposed to monolithic architectures, partitioned approaches (also known as 

distributed) rely on splitting the optimization problem into a set of sub-problems. The main 

advantage is the possibility of parallel computing implementations, along with the ability 

of integrating the architecture into existing organizational structures. Monolithic 

architecture may use parallel environments; however, all discipline analyses are run the 

same number of times in a synchronous fashion, exhibiting poor load balancing when 

analysis times differ significantly. The global computational effort of partitioned 

architectures may be larger than monolithic architectures; nonetheless, the ability of 

exploiting efficiently parallel computing resources can provide a significant reduction in 

wall clock time. Moreover, a partitioned architecture may better suit a design environment 
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where existing specialized engineering groups work independently on their discipline of 

competency, sporadically exchanging information with the others. Partitioned architecture 

are generally built on two levels, namely, the global system level and the discipline level. 

Consequently, two optimization problems are defined for each architecture and each 

discipline may perform its own optimization sub-problem in parallel. The concept of 

decomposing the optimization in sub-problems is based on the idea of taking advantage of 

discipline independence. Full separability, where there are no shared variables or functions, 

is unusual and a method for modeling discipline interaction, by means of shared variables 

and functions, is required. 
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